cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155587 Expansion of (1 + x*c(x))/(1 - x), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 3, 5, 10, 24, 66, 198, 627, 2057, 6919, 23715, 82501, 290513, 1033413, 3707853, 13402698, 48760368, 178405158, 656043858, 2423307048, 8987427468, 33453694488, 124936258128, 467995871778, 1757900019102, 6619846420554
Offset: 0

Views

Author

Paul Barry, Jan 24 2009

Keywords

Comments

Row sums of A155586.
Hankel transform is A057079(n+2).
From Petros Hadjicostas, Aug 03 2020: (Start)
To prove R. J. Mathar's conjecture, note that the o.g.f. of the sequence implies (Sum_{n >= 0} a(n)*x^n)*(1 - x) = 1 + x*c(x); i.e., a(0) + Sum_{n >= 1} (a(n) - a(n-1))*x^n = 1 + Sum_{n >= 1} C(n-1)*x^n, where C(n) = A000108(n) (Catalan numbers).
Thus, C(n-1) = a(n) - a(n-1) (for n >= 1), and hence C(n) = a(n+1) - a(n). Since 2*(2*n - 1)*C(n-1) = (n + 1)*C(n), we get (n + 1)*a(n+1) + (-5*n + 1)*a(n) + 2*(2*n - 1)*a(n-1) = 0. The last equation implies R. J. Mathar's conjecture. (End)

Crossrefs

Partial sums of A120588.

Programs

  • Haskell
    a155587 n = a155587_list !! n
    a155587_list = scanl (+) 1 a000108_list  -- Reinhard Zumkeller, Mar 01 2013
  • Maple
    CatalanNumber := n -> binomial(2*n, n)/(n+1):
    a := n -> ((3 - I*sqrt(3)))/2 - CatalanNumber(n)*hypergeom([1, n+1/2], [n+2], 4):
    seq(simplify(a(n)), n=0..26); # Peter Luschny, Aug 04 2020

Formula

a(n) = 1 + Sum_{k=0..n-1} A000108(k).
Conjecture: n*a(n) + (6-5*n)*a(n-1) + 2*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 15 2011
a(n) = A014138(n-1) + 2 for n > 0. - Reinhard Zumkeller, Mar 01 2013 [Corrected by Petros Hadjicostas, Aug 03 2020]
a(n+1) - a(n) = A000108(n). - Petros Hadjicostas, Aug 04 2020
a(n) = ((3 - i*sqrt(3)))/2 - CatalanNumber(n)*hypergeom([1, n + 1/2], [n + 2], 4). - Peter Luschny, Aug 04 2020