A155587 Expansion of (1 + x*c(x))/(1 - x), where c(x) is the g.f. of A000108.
1, 2, 3, 5, 10, 24, 66, 198, 627, 2057, 6919, 23715, 82501, 290513, 1033413, 3707853, 13402698, 48760368, 178405158, 656043858, 2423307048, 8987427468, 33453694488, 124936258128, 467995871778, 1757900019102, 6619846420554
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Gerard Cohen and Jean-Pierre Flori, On a generalized combinatorial conjecture involving addition mod 2^k - 1, IACR, Report 2011/400.
- Jean-Pierre Flori, Fonctions booléennes, courbes algébriques et multiplication complexe, Thesis, ParisTech, Feb 03 2012.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Programs
-
Haskell
a155587 n = a155587_list !! n a155587_list = scanl (+) 1 a000108_list -- Reinhard Zumkeller, Mar 01 2013
-
Maple
CatalanNumber := n -> binomial(2*n, n)/(n+1): a := n -> ((3 - I*sqrt(3)))/2 - CatalanNumber(n)*hypergeom([1, n+1/2], [n+2], 4): seq(simplify(a(n)), n=0..26); # Peter Luschny, Aug 04 2020
Formula
a(n) = 1 + Sum_{k=0..n-1} A000108(k).
Conjecture: n*a(n) + (6-5*n)*a(n-1) + 2*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 15 2011
a(n) = A014138(n-1) + 2 for n > 0. - Reinhard Zumkeller, Mar 01 2013 [Corrected by Petros Hadjicostas, Aug 03 2020]
a(n+1) - a(n) = A000108(n). - Petros Hadjicostas, Aug 04 2020
a(n) = ((3 - i*sqrt(3)))/2 - CatalanNumber(n)*hypergeom([1, n + 1/2], [n + 2], 4). - Peter Luschny, Aug 04 2020
Comments