A155632 a(n) = 11^n - 4^n + 1^n.
1, 8, 106, 1268, 14386, 160028, 1767466, 19470788, 214293346, 2357685548, 25936376026, 285307476308, 3138411599506, 34522645035068, 379749565147786, 4177247095673828, 45949725568604866, 505447011319424588, 5559917244772754746, 61159090173536639348, 672749993833048381426
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..950
- Index entries for linear recurrences with constant coefficients, signature (16,-59,44).
Crossrefs
Programs
-
Mathematica
Table[11^n - 4^n + 1, {n, 0, 25}] (* Paolo Xausa, Jul 26 2024 *)
-
PARI
a(n)=11^n-4^n+1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: 1/(1-11*x)-1/(1-4*x)+1/(1-x).
E.g.f.: e^(11*x)-e^(4*x)+e^x.
a(n) = 15*a(n-1)-44*a(n-2)+30 with a(0) = 1, a(1) = 8. - Vincenzo Librandi, Jul 21 2010