cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155742 Triangle T(n, k) = (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k), read by rows.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 6, 6, 0, 0, 36, 121, 36, 0, 0, 240, 1750, 1750, 240, 0, 0, 1800, 23290, 50625, 23290, 1800, 0, 0, 15120, 308700, 1193640, 1193640, 308700, 15120, 0, 0, 141120, 4207896, 25738720, 45819361, 25738720, 4207896, 141120, 0, 0, 1451520, 59832864, 535810464, 1510458516, 1510458516, 535810464, 59832864, 1451520, 0
Offset: 0

Views

Author

Roger L. Bagula, Jan 26 2009

Keywords

Examples

			Triangle begins as:
  1;
  0,      0;
  0,      1,       0;
  0,      6,       6,        0;
  0,     36,     121,       36,        0;
  0,    240,    1750,     1750,      240,        0;
  0,   1800,   23290,    50625,    23290,     1800,       0;
  0,  15120,  308700,  1193640,  1193640,   308700,   15120,      0;
  0, 141120, 4207896, 25738720, 45819361, 25738720, 4207896, 141120, 0;
		

Crossrefs

Cf. A048994, A342111 (row sums).

Programs

  • Magma
    A155742:= func< n,k | (-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k) >;
    [A155742(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 05 2021
    
  • Mathematica
    T[n_, k_]:= (-1)^n*StirlingS1[n, k]*StirlingS1[n, n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 05 2021 *)
  • Sage
    def A155742(n,k): return stirling_number1(n,k)*stirling_number1(n, n-k)
    flatten([[A155742(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021

Formula

T(n, k) = (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k).
Sum_{k=0..n} T(n, k) = A342111(n). - G. C. Greubel, Jun 05 2021

Extensions

Edited by G. C. Greubel, Jun 05 2021