A155742 Triangle T(n, k) = (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k), read by rows.
1, 0, 0, 0, 1, 0, 0, 6, 6, 0, 0, 36, 121, 36, 0, 0, 240, 1750, 1750, 240, 0, 0, 1800, 23290, 50625, 23290, 1800, 0, 0, 15120, 308700, 1193640, 1193640, 308700, 15120, 0, 0, 141120, 4207896, 25738720, 45819361, 25738720, 4207896, 141120, 0, 0, 1451520, 59832864, 535810464, 1510458516, 1510458516, 535810464, 59832864, 1451520, 0
Offset: 0
Examples
Triangle begins as: 1; 0, 0; 0, 1, 0; 0, 6, 6, 0; 0, 36, 121, 36, 0; 0, 240, 1750, 1750, 240, 0; 0, 1800, 23290, 50625, 23290, 1800, 0; 0, 15120, 308700, 1193640, 1193640, 308700, 15120, 0; 0, 141120, 4207896, 25738720, 45819361, 25738720, 4207896, 141120, 0;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle flattened
Programs
-
Magma
A155742:= func< n,k | (-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k) >; [A155742(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 05 2021
-
Mathematica
T[n_, k_]:= (-1)^n*StirlingS1[n, k]*StirlingS1[n, n-k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 05 2021 *)
-
Sage
def A155742(n,k): return stirling_number1(n,k)*stirling_number1(n, n-k) flatten([[A155742(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021
Formula
T(n, k) = (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k).
Sum_{k=0..n} T(n, k) = A342111(n). - G. C. Greubel, Jun 05 2021
Extensions
Edited by G. C. Greubel, Jun 05 2021