cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155744 Triangle T(n, k) = (-1)^(n-k)*StirlingS1(n, k) + (-1)^k*StirlingS1(n, n-k) + (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k), read by rows.

Original entry on oeis.org

3, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 48, 143, 48, 1, 1, 274, 1835, 1835, 274, 1, 1, 1935, 23649, 51075, 23649, 1935, 1, 1, 15861, 310639, 1195999, 1195999, 310639, 15861, 1, 1, 146188, 4221286, 25753812, 45832899, 25753812, 4221286, 146188, 1, 1, 1491876, 59942994, 535933124, 1510548249, 1510548249, 535933124, 59942994, 1491876, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 26 2009

Keywords

Examples

			  3;
  1,      1;
  1,      3,       1;
  1,     11,      11,        1;
  1,     48,     143,       48,        1;
  1,    274,    1835,     1835,      274,        1;
  1,   1935,   23649,    51075,    23649,     1935,       1;
  1,  15861,  310639,  1195999,  1195999,   310639,   15861,      1;
  1, 146188, 4221286, 25753812, 45832899, 25753812, 4221286, 146188, 1;
		

Crossrefs

Programs

  • Magma
    A155744:= func< n,k | (-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k) + (-1)^k*StirlingFirst(n, n-k) + (-1)^(n-k)*StirlingFirst(n, k) >;
    [A155744(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 05 2021
    
  • Mathematica
    T[n_, k_] = (-1)^(n-k)*StirlingS1[n, k] + (-1)^k*StirlingS1[n, n-k] + (-1)^n*StirlingS1[n, k]*StirlingS1[n, n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 05 2021 *)
  • Sage
    def A155744(n,k): return stirling_number1(n, k)*stirling_number1(n, n-k) + stirling_number1(n, k) + stirling_number1(n, n-k)
    flatten([[A155744(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021

Formula

T(n, k) = (-1)^(n-k)*StirlingS1(n, k) + (-1)^k*StirlingS1(n, n-k) + (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k).
Sum_{k=0..n} T(n, k) = 2*n! + A342111(n). - G. C. Greubel, Jun 05 2021

Extensions

Edited by G. C. Greubel, Jun 05 2021