cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155761 Riordan array (c(2*x^2), x*c(2*x^2)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 4, 0, 1, 8, 0, 6, 0, 1, 0, 20, 0, 8, 0, 1, 40, 0, 36, 0, 10, 0, 1, 0, 112, 0, 56, 0, 12, 0, 1, 224, 0, 224, 0, 80, 0, 14, 0, 1, 0, 672, 0, 384, 0, 108, 0, 16, 0, 1, 1344, 0, 1440, 0, 600, 0, 140, 0, 18, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 26 2009

Keywords

Comments

Inverse of Riordan array (1/(1+2*x^2), x/(1+2*x^2)).

Examples

			Triangle begins:
    1;
    0,   1;
    2,   0,   1;
    0,   4,   0,  1;
    8,   0,   6,  0,  1;
    0,  20,   0,  8,  0,  1;
   40,   0,  36,  0, 10,  0,  1;
    0, 112,   0, 56,  0, 12,  0, 1;
  224,   0, 224,  0, 80,  0, 14, 0, 1;
Production matrix begins as:
  0, 1;
  2, 0, 1;
  0, 2, 0, 1;
  0, 0, 2, 0, 1;
  0, 0, 0, 2, 0, 1;
  0, 0, 0, 0, 2, 0, 1;
  0, 0, 0, 0, 0, 2, 0, 1;
  0, 0, 0, 0, 0, 0, 2, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 2, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1;
		

Crossrefs

Cf. A064062, A126087 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= (1+(-1)^(n-k))*2^((n-k-2)/2)*((k+1)/(n+1))*Binomial[n+1, (n-k)/2];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)
  • Sage
    def A155761(n,k): return (1+(-1)^(n-k))*2^((n-k-2)/2)*((k+1)/(n+1))*binomial(n+1, (n-k)/2)
    flatten([[A155761(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 06 2021

Formula

T(n,k) = (1+(-1)^(n-k)) * ((k+1)/(n+1)) * binomial(n+1, (n-k)/2) * 2^((n-k-2)/2).
Sum_{k=0..n} T(n, k) = A126087(n).
T(n,k) = 2^((n-k)/2) * A053121(n,k). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(2*n-k, k) = A064062(n+1). - G. C. Greubel, Jun 06 2021