A155761 Riordan array (c(2*x^2), x*c(2*x^2)) where c(x) is the g.f. of A000108.
1, 0, 1, 2, 0, 1, 0, 4, 0, 1, 8, 0, 6, 0, 1, 0, 20, 0, 8, 0, 1, 40, 0, 36, 0, 10, 0, 1, 0, 112, 0, 56, 0, 12, 0, 1, 224, 0, 224, 0, 80, 0, 14, 0, 1, 0, 672, 0, 384, 0, 108, 0, 16, 0, 1, 1344, 0, 1440, 0, 600, 0, 140, 0, 18, 0, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 2, 0, 1; 0, 4, 0, 1; 8, 0, 6, 0, 1; 0, 20, 0, 8, 0, 1; 40, 0, 36, 0, 10, 0, 1; 0, 112, 0, 56, 0, 12, 0, 1; 224, 0, 224, 0, 80, 0, 14, 0, 1; Production matrix begins as: 0, 1; 2, 0, 1; 0, 2, 0, 1; 0, 0, 2, 0, 1; 0, 0, 0, 2, 0, 1; 0, 0, 0, 0, 2, 0, 1; 0, 0, 0, 0, 0, 2, 0, 1; 0, 0, 0, 0, 0, 0, 2, 0, 1; 0, 0, 0, 0, 0, 0, 0, 2, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= (1+(-1)^(n-k))*2^((n-k-2)/2)*((k+1)/(n+1))*Binomial[n+1, (n-k)/2]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 06 2021 *)
-
Sage
def A155761(n,k): return (1+(-1)^(n-k))*2^((n-k-2)/2)*((k+1)/(n+1))*binomial(n+1, (n-k)/2) flatten([[A155761(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 06 2021
Formula
T(n,k) = (1+(-1)^(n-k)) * ((k+1)/(n+1)) * binomial(n+1, (n-k)/2) * 2^((n-k-2)/2).
Sum_{k=0..n} T(n, k) = A126087(n).
T(n,k) = 2^((n-k)/2) * A053121(n,k). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(2*n-k, k) = A064062(n+1). - G. C. Greubel, Jun 06 2021
Comments