cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155826 Triangle T(n, k) = binomial(n, k) + binomial(k*(n-k), n) + 2*(-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k), read by rows.

Original entry on oeis.org

4, 1, 1, 1, 4, 1, 1, 15, 15, 1, 1, 76, 249, 76, 1, 1, 485, 3516, 3516, 485, 1, 1, 3606, 46623, 101354, 46623, 3606, 1, 1, 30247, 617541, 2388107, 2388107, 617541, 30247, 1, 1, 282248, 8416315, 51483931, 91651662, 51483931, 8416315, 282248, 1, 1, 2903049, 119667766, 1071669632, 3021085118, 3021085118, 1071669632, 119667766, 2903049, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 28 2009

Keywords

Examples

			Triangle begins as:
  4;
  1,      1;
  1,      4,       1;
  1,     15,      15,        1;
  1,     76,     249,       76,        1;
  1,    485,    3516,     3516,      485,        1;
  1,   3606,   46623,   101354,    46623,     3606,       1;
  1,  30247,  617541,  2388107,  2388107,   617541,   30247,     1;
  1, 282248, 8416315, 51483931, 91651662, 51483931, 8416315, 282248, 1;
		

Crossrefs

Programs

  • Magma
    A155826:= func< n,k | Binomial(n, k) + Binomial(k*(n-k), n) + 2*(-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k) >;
    [A155826(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 03 2021
    
  • Mathematica
    T[n_, k_]:= Binomial[n, k] + Binomial[k*(n-k), n] + 2*(-1)^n*StirlingS1[n, k]*StirlingS1[n, n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 03 2021 *)
  • Sage
    def A155826(n,k): return binomial(n, k) + binomial(k*(n-k), n) + 2*stirling_number1(n, k)*stirling_number1(n, n-k)
    flatten([[A155826(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 03 2021

Formula

T(n, k) = binomial(n, k) + binomial(k*(n-k), n) + 2*(-1)^n*StirlingS1(n, k) * StirlingS1(n, n-k).
Sum_{k=0..n} T(n, k) = 2^n + 2*342111(n) + Sum_{k=0..n} binomial(k*(n-k), n). - G. C. Greubel, Jun 03 2021

Extensions

Edited by G. C. Greubel, Jun 03 2021