A155826 Triangle T(n, k) = binomial(n, k) + binomial(k*(n-k), n) + 2*(-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k), read by rows.
4, 1, 1, 1, 4, 1, 1, 15, 15, 1, 1, 76, 249, 76, 1, 1, 485, 3516, 3516, 485, 1, 1, 3606, 46623, 101354, 46623, 3606, 1, 1, 30247, 617541, 2388107, 2388107, 617541, 30247, 1, 1, 282248, 8416315, 51483931, 91651662, 51483931, 8416315, 282248, 1, 1, 2903049, 119667766, 1071669632, 3021085118, 3021085118, 1071669632, 119667766, 2903049, 1
Offset: 0
Examples
Triangle begins as: 4; 1, 1; 1, 4, 1; 1, 15, 15, 1; 1, 76, 249, 76, 1; 1, 485, 3516, 3516, 485, 1; 1, 3606, 46623, 101354, 46623, 3606, 1; 1, 30247, 617541, 2388107, 2388107, 617541, 30247, 1; 1, 282248, 8416315, 51483931, 91651662, 51483931, 8416315, 282248, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A155826:= func< n,k | Binomial(n, k) + Binomial(k*(n-k), n) + 2*(-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k) >; [A155826(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 03 2021
-
Mathematica
T[n_, k_]:= Binomial[n, k] + Binomial[k*(n-k), n] + 2*(-1)^n*StirlingS1[n, k]*StirlingS1[n, n-k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 03 2021 *)
-
Sage
def A155826(n,k): return binomial(n, k) + binomial(k*(n-k), n) + 2*stirling_number1(n, k)*stirling_number1(n, n-k) flatten([[A155826(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 03 2021
Formula
T(n, k) = binomial(n, k) + binomial(k*(n-k), n) + 2*(-1)^n*StirlingS1(n, k) * StirlingS1(n, n-k).
Sum_{k=0..n} T(n, k) = 2^n + 2*342111(n) + Sum_{k=0..n} binomial(k*(n-k), n). - G. C. Greubel, Jun 03 2021
Extensions
Edited by G. C. Greubel, Jun 03 2021