A155834 A triangle sequence of general recursive Sierpinski-Pascal minus general Narayana with adjusted n,m levels and zeros out:k=2; t(n,m)=Pascal(n,m,k-1)-Narayana(n-1,m-1,2*(k-1)).
1, 1, 6, 16, 6, 22, 127, 127, 22, 64, 701, 1436, 701, 64, 163, 3117, 11503, 11503, 3117, 163, 382, 12088, 74122, 131494, 74122, 12088, 382, 848, 42890, 413612, 1193930, 1193930, 413612, 42890, 848, 1816, 143562, 2094588, 9280734, 14992440, 9280734
Offset: 4
Examples
{1, 1}, {6, 16, 6}, {22, 127, 127, 22}, {64, 701, 1436, 701, 64}, {163, 3117, 11503, 11503, 3117, 163}, {382, 12088, 74122, 131494, 74122, 12088, 382}, {848, 42890, 413612, 1193930, 1193930, 413612, 42890, 848}, {1816, 143562, 2094588, 9280734, 14992440, 9280734, 2094588, 143562, 1816}, {3797, 462541, 9928140, 64761204, 158774838, 158774838, 64761204, 9928140, 462541, 3797}, {7814, 1453700, 44960878, 418557816, 1489425900, 2250878592, 1489425900, 418557816, 44960878, 1453700, 7814}, {15914, 4495909, 197226603, 2558716162, 12781854516, 27839586777, 27839586777, 12781854516, 2558716162, 197226603, 4495909, 15914}
Programs
-
Mathematica
Clear[A, a0, b0, n, k, m, t, i]; A[n_, 1, m_] := 1; A[n_, n_, m_] := 1; A[n_, k_, m_] := (m*n - m*k + 1)*A[n - 1, k - 1, m] + (m*k - (m - 1))*A[n - 1, k, m]; t[n_, m_, i_] = Product[Binomial[n + k, m + k]/Binomial[n - m + k, k], {k, 0, i}]; m = 2; a = Table[A[n, k, m - 1] - t[n - 1, k - 1, (2*m - 2)], {n, 4, 14}, { k, 2, n - 1}]; Flatten[a]
Formula
Pascal(n,m,k):
a(n,k,m)=(m*n - m*k + 1)*a(n - 1, k - 1, m) + (m*k - (m - 1))*a(n - 1, k, m);
Narayana(n,m,k):
y(n,m,k)=Product[Binomial[n + k, m + k]/Binomial[n - m + k, k], {k, 0, i}];
k=2;
t(n,m)=Pascal(n,m,k-1)-Narayana(n-1,m-1,2*(k-1)).
Comments