cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155834 A triangle sequence of general recursive Sierpinski-Pascal minus general Narayana with adjusted n,m levels and zeros out:k=2; t(n,m)=Pascal(n,m,k-1)-Narayana(n-1,m-1,2*(k-1)).

Original entry on oeis.org

1, 1, 6, 16, 6, 22, 127, 127, 22, 64, 701, 1436, 701, 64, 163, 3117, 11503, 11503, 3117, 163, 382, 12088, 74122, 131494, 74122, 12088, 382, 848, 42890, 413612, 1193930, 1193930, 413612, 42890, 848, 1816, 143562, 2094588, 9280734, 14992440, 9280734
Offset: 4

Views

Author

Roger L. Bagula, Jan 28 2009

Keywords

Comments

Row sums are;
2, 28, 298, 2966, 29566, 304678, 3302560, 38033840, 467861040, 6159690808,
86763791762,...
This level is the Eulerian number level:
only the odd Narayana levels correspond to the recursive Sierpinski-Pascal levels.

Examples

			{1, 1},
{6, 16, 6},
{22, 127, 127, 22},
{64, 701, 1436, 701, 64},
{163, 3117, 11503, 11503, 3117, 163},
{382, 12088, 74122, 131494, 74122, 12088, 382},
{848, 42890, 413612, 1193930, 1193930, 413612, 42890, 848},
{1816, 143562, 2094588, 9280734, 14992440, 9280734, 2094588, 143562, 1816},
{3797, 462541, 9928140, 64761204, 158774838, 158774838, 64761204, 9928140, 462541, 3797},
{7814, 1453700, 44960878, 418557816, 1489425900, 2250878592, 1489425900, 418557816, 44960878, 1453700, 7814},
{15914, 4495909, 197226603, 2558716162, 12781854516, 27839586777, 27839586777, 12781854516, 2558716162, 197226603, 4495909, 15914}
		

Crossrefs

Programs

  • Mathematica
    Clear[A, a0, b0, n, k, m, t, i];
    A[n_, 1, m_] := 1; A[n_, n_, m_] := 1;
    A[n_, k_, m_] := (m*n - m*k + 1)*A[n - 1, k - 1, m] + (m*k - (m - 1))*A[n - 1, k, m];
    t[n_, m_, i_] = Product[Binomial[n + k, m + k]/Binomial[n - m + k, k], {k, 0, i}];
    m = 2; a = Table[A[n, k, m - 1] - t[n - 1, k - 1, (2*m - 2)], {n, 4, 14}, { k, 2, n - 1}];
    Flatten[a]

Formula

Pascal(n,m,k):
a(n,k,m)=(m*n - m*k + 1)*a(n - 1, k - 1, m) + (m*k - (m - 1))*a(n - 1, k, m);
Narayana(n,m,k):
y(n,m,k)=Product[Binomial[n + k, m + k]/Binomial[n - m + k, k], {k, 0, i}];
k=2;
t(n,m)=Pascal(n,m,k-1)-Narayana(n-1,m-1,2*(k-1)).