cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155839 A ratio of two Catalan arrays.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 4, 7, 6, 0, 1, 0, 8, 18, 16, 10, 0, 1, 0, 16, 45, 51, 30, 15, 0, 1, 0, 32, 110, 152, 115, 50, 21, 0, 1, 0, 64, 264, 436, 396, 225, 77, 28, 0, 1, 0, 128, 624, 1212, 1300, 876, 399, 112, 36, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 28 2009

Keywords

Examples

			Triangle begins
  1;
  0,  1;
  0,  0,   1;
  0,  1,   0,   1;
  0,  2,   3,   0,   1;
  0,  4,   7,   6,   0,  1;
  0,  8,  18,  16,  10,  0,  1;
  0, 16,  45,  51,  30, 15,  0, 1;
  0, 32, 110, 152, 115, 50, 21, 0, 1;
		

Crossrefs

Cf. A000108, A033184, A120010 (row sums), A124644.

Programs

  • Magma
    A155839:= func< n,k | (&+[(-1)^(n-j)*Binomial(j+1, n-j)*Binomial(j, k)*Catalan(j-k) : j in [k..n]]) >;
    [A155839(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
    
  • Mathematica
    T[n_, k_] = Sum[(-1)^j*Binomial[n-j, k]*Binomial[n-j+1, j]*CatalanNumber[n-k-j], {j, 0, n-k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 04 2021 *)
  • Sage
    def A155839(n,k): return sum( (-1)^j*binomial(n-j,k)*binomial(n-j+1,j)*catalan_number(n-k-j) for j in (0..n-k))
    flatten([[A155839(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021

Formula

T(n, k) = Sum_{j=k..n} (-1)^(n-j)*binomial(j+1, n-j)*binomial(j, k)*A000108(j-k).
Sum_{k=0..n} T(n, k) = A120010(n+1).
Equals A033184^{-1}*A124644.