A155839 A ratio of two Catalan arrays.
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 4, 7, 6, 0, 1, 0, 8, 18, 16, 10, 0, 1, 0, 16, 45, 51, 30, 15, 0, 1, 0, 32, 110, 152, 115, 50, 21, 0, 1, 0, 64, 264, 436, 396, 225, 77, 28, 0, 1, 0, 128, 624, 1212, 1300, 876, 399, 112, 36, 0, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 0, 0, 1; 0, 1, 0, 1; 0, 2, 3, 0, 1; 0, 4, 7, 6, 0, 1; 0, 8, 18, 16, 10, 0, 1; 0, 16, 45, 51, 30, 15, 0, 1; 0, 32, 110, 152, 115, 50, 21, 0, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A155839:= func< n,k | (&+[(-1)^(n-j)*Binomial(j+1, n-j)*Binomial(j, k)*Catalan(j-k) : j in [k..n]]) >; [A155839(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
-
Mathematica
T[n_, k_] = Sum[(-1)^j*Binomial[n-j, k]*Binomial[n-j+1, j]*CatalanNumber[n-k-j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 04 2021 *)
-
Sage
def A155839(n,k): return sum( (-1)^j*binomial(n-j,k)*binomial(n-j+1,j)*catalan_number(n-k-j) for j in (0..n-k)) flatten([[A155839(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021