cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155857 Row sums of triangle A155856.

Original entry on oeis.org

1, 2, 6, 23, 107, 590, 3786, 27821, 230869, 2137978, 21873854, 245151555, 2987967551, 39358156310, 557259550034, 8440866957273, 136211005966889, 2333068710452146, 42276699542130166, 808068680469402095, 16248405328930779027, 342877404288485770718, 7576652528705018522906
Offset: 0

Views

Author

Paul Barry, Jan 29 2009

Keywords

Comments

For positive n, a(n) equals the permanent of the n X n matrix with 2's along the main diagonal and the upper diagonal, and 1's everywhere else. - John M. Campbell, Jul 09 2011

Crossrefs

Cf. A155856.

Programs

  • Mathematica
    Table[Sum[Binomial[2*n-k,k]*(n-k)!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Feb 08 2014 *)
  • Sage
    [sum(binomial(2*n-k, k)*factorial(n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 05 2021

Formula

G.f.: 1/(1 -x -x/(1 -x -x/(1 -x -2*x/(1 -x -2*x/(1 -x -3*x/(1 -x -3*x/(1 - ... (continued fraction);
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*(n-k)!.
a(n) = Sum_{k=0..n} binomial(n+k, 2*k)*k!. - Paul Barry, May 28 2009
a(n) = (n+1)*a(n-1) -(n-3)*a(n-2) -a(n-3). - R. J. Mathar, Nov 15 2012
a(n) ~ exp(2) * n!. - Vaclav Kotesovec, Feb 08 2014