A155856
Triangle T(n,k) = binomial(2*n-k, k)*(n-k)!, read by rows.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 10, 6, 1, 24, 42, 30, 10, 1, 120, 216, 168, 70, 15, 1, 720, 1320, 1080, 504, 140, 21, 1, 5040, 9360, 7920, 3960, 1260, 252, 28, 1, 40320, 75600, 65520, 34320, 11880, 2772, 420, 36, 1, 362880, 685440, 604800, 327600, 120120, 30888, 5544, 660, 45, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 10, 6, 1;
24, 42, 30, 10, 1;
120, 216, 168, 70, 15, 1;
720, 1320, 1080, 504, 140, 21, 1;
5040, 9360, 7920, 3960, 1260, 252, 28, 1;
-
Table[Binomial[2n-k,k](n-k)!,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 24 2017 *)
-
flatten([[factorial(n-k)*binomial(2*n-k, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
A273596
For n >= 2, a(n) is the number of slim rectangular diagrams of length n.
Original entry on oeis.org
1, 3, 9, 32, 139, 729, 4515, 32336, 263205, 2401183, 24275037, 269426592, 3257394143, 42615550453, 599875100487, 9040742057760, 145251748024649, 2478320458476795, 44755020000606961, 852823700470009056, 17101229029400788083, 359978633317886558801, 7936631162022905081707
Offset: 2
The initial term is the diagram of the four element diamond shape lattice.
- Vaclav Kotesovec, Table of n, a(n) for n = 2..400
- P. Bala, Notes on A273596
- Gábor Czédli, Tamás Dékány, Gergő Gyenizse, and Júlia Kulin, The number of slim rectangular lattices, Algebra Universalis, 2016, Volume 75, Issue 1, pp 33-50.
-
A273596 := proc (n) option remember; `if`(n = 2, 1, `if`(n = 3, 3, (n-2)*procname(n-1) + procname(n-2) + 2)) end: seq(A273596(n), n = 2..20); # Peter Bala, Jan 08 2017
-
x = 15;
SRectD = Table[0, {x}];
For[n = 2, n < x, n++,
For[a = 1, a < n, a++,
For[b = 1, b <= n - a, b++,
SRectD[[n]] +=
Binomial[n - a - 1, b - 1]*
Binomial[n - b - 1, a - 1]*(n - a - b)!;
]
]
Print[n, " ", SRectD[[n]]]
]
(* Alternatively: *)
T[n_, k_] := HypergeometricPFQ[{k+1, k-n}, {}, -1];
Table[Sum[T[n,k], {k,0,n}], {n,0,22}] (* Peter Luschny, Oct 05 2017 *)
-
a(n)= sum(rps=1, n, sum(r=1, n, s = rps-r; binomial(n-r-1, s-1) * binomial(n-s-1, r-1) * (n-r-s)!)); \\ Michel Marcus, Jun 12 2016
A156367
Triangle T(n, k) = binomial(n+k, 2*k)*k!, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 6, 10, 6, 1, 10, 30, 42, 24, 1, 15, 70, 168, 216, 120, 1, 21, 140, 504, 1080, 1320, 720, 1, 28, 252, 1260, 3960, 7920, 9360, 5040, 1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320, 1, 45, 660, 5544, 30888, 120120, 327600, 604800, 685440, 362880
Offset: 0
Triangle begins
1;
1, 1;
1, 3, 2;
1, 6, 10, 6;
1, 10, 30, 42, 24;
1, 15, 70, 168, 216, 120;
1, 21, 140, 504, 1080, 1320, 720;
1, 28, 252, 1260, 3960, 7920, 9360, 5040;
1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320;
-
Flatten[Table[Binomial[n+k,2k]k!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 17 2015 *)
-
flatten([[factorial(k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021
Showing 1-3 of 3 results.
Comments