cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A155857 Row sums of triangle A155856.

Original entry on oeis.org

1, 2, 6, 23, 107, 590, 3786, 27821, 230869, 2137978, 21873854, 245151555, 2987967551, 39358156310, 557259550034, 8440866957273, 136211005966889, 2333068710452146, 42276699542130166, 808068680469402095, 16248405328930779027, 342877404288485770718, 7576652528705018522906
Offset: 0

Views

Author

Paul Barry, Jan 29 2009

Keywords

Comments

For positive n, a(n) equals the permanent of the n X n matrix with 2's along the main diagonal and the upper diagonal, and 1's everywhere else. - John M. Campbell, Jul 09 2011

Crossrefs

Cf. A155856.

Programs

  • Mathematica
    Table[Sum[Binomial[2*n-k,k]*(n-k)!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Feb 08 2014 *)
  • Sage
    [sum(binomial(2*n-k, k)*factorial(n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 05 2021

Formula

G.f.: 1/(1 -x -x/(1 -x -x/(1 -x -2*x/(1 -x -2*x/(1 -x -3*x/(1 -x -3*x/(1 - ... (continued fraction);
a(n) = Sum_{k=0..n} binomial(2*n-k, k)*(n-k)!.
a(n) = Sum_{k=0..n} binomial(n+k, 2*k)*k!. - Paul Barry, May 28 2009
a(n) = (n+1)*a(n-1) -(n-3)*a(n-2) -a(n-3). - R. J. Mathar, Nov 15 2012
a(n) ~ exp(2) * n!. - Vaclav Kotesovec, Feb 08 2014

A155858 Diagonal sums of triangle A155856.

Original entry on oeis.org

1, 1, 3, 9, 35, 168, 967, 6538, 50831, 446919, 4383861, 47451921, 561715093, 7217604520, 100031995789, 1487319385140, 23613262336093, 398673670050021, 7132188802005991, 134766129577134553, 2681929390235577831
Offset: 0

Views

Author

Paul Barry, Jan 29 2009

Keywords

Crossrefs

Cf. A155856.

Programs

  • Mathematica
    Table[Sum[Binomial[2*n-3*k, k]*(n-2*k)!, {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 05 2021 *)
  • Sage
    [sum( binomial(2*n-3*k, k)*factorial(n-2*k) for k in (0..n//2) ) for n in (0..30)] # G. C. Greubel, Jun 05 2021

Formula

G.f.: 1/(1 -x^2 -x/(1 -x^2 -x/(1 -x^2 -2*x/(1 -x^2 -2*x/(1 -x^2 -3*x/(1 -x^2 -3*x/(1 - ... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k, k)*(n-2*k)!.
Conjecture: a(n) -(n-1)*a(n-1) -(n-2)*a(n-2) +(n-3)*a(n-3) +(n-10)*a(n-4) -5*a(n-5) +3*a(n-6) +3*a(n-7) = 0. - R. J. Mathar, Feb 05 2015
a(n) ~ n! * (1 + 2/n + 1/n^2 - 2/(3*n^3) - 22/(3*n^4) - 491/(15*n^5) - 11467/(90*n^6) - ...). - Vaclav Kotesovec, Jun 05 2021

A161556 Exponential Riordan array [1 + (sqrt(Pi)/2)*x*exp(x^2/4)*erf(x/2), x].

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 6, 0, 30, 0, 15, 0, 1, 0, 42, 0, 70, 0, 21, 0, 1, 24, 0, 168, 0, 140, 0, 28, 0, 1, 0, 216, 0, 504, 0, 252, 0, 36, 0, 1, 120, 0, 1080, 0, 1260, 0, 420, 0, 45, 0, 1
Offset: 0

Views

Author

Paul Barry, Jun 13 2009

Keywords

Comments

Row sums are A084261.

Examples

			Triangle begins
   1;
   0,   1;
   1,   0,   1;
   0,   3,   0,   1;
   2,   0,   6,   0,   1;
   0,  10,   0,  10,   0,   1;
   6,   0,  30,   0,  15,   0,   1;
   0,  42,   0,  70,   0,  21,   0,   1;
  24,   0, 168,   0, 140,   0,  28,   0,   1;
Production matrix begins
   0,   1;
   1,   0,   1;
   0,   2,   0,   1;
  -1,   0,   3,   0,   1;
   0,  -4,   0,   4,   0,   1;
   6,   0, -10,   0,   5,   0,   1;
   0,  36,   0, -20,   0,   6,   0,   1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Boole[k <= n] Binomial[n, k] ((n-k)/2)! (1 + (-1)^(n-k))/2; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 30 2016 *)

Formula

T(n,k) = [k<=n]*binomial(n,k)*((n-k)/2)!*(1+(-1)^(n-k))/2.
G.f.: 1/(1-x*y-x^2/(1-x*y-x^2/(1-x*y-2x^2/(1-x*y-2x^2/(1-x*y-3x^2/(1-... (continued fraction).

A156367 Triangle T(n, k) = binomial(n+k, 2*k)*k!, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 6, 1, 10, 30, 42, 24, 1, 15, 70, 168, 216, 120, 1, 21, 140, 504, 1080, 1320, 720, 1, 28, 252, 1260, 3960, 7920, 9360, 5040, 1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320, 1, 45, 660, 5544, 30888, 120120, 327600, 604800, 685440, 362880
Offset: 0

Views

Author

Paul Barry, Feb 08 2009

Keywords

Examples

			Triangle begins
  1;
  1,  1;
  1,  3,   2;
  1,  6,  10,    6;
  1, 10,  30,   42,    24;
  1, 15,  70,  168,   216,   120;
  1, 21, 140,  504,  1080,  1320,   720;
  1, 28, 252, 1260,  3960,  7920,  9360,  5040;
  1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320;
		

Crossrefs

Cf. A084261 (diagonal sums), A155856 (row reversal), A155857 (row sums)

Programs

  • Mathematica
    Flatten[Table[Binomial[n+k,2k]k!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 17 2015 *)
  • Sage
    flatten([[factorial(k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021

Formula

G.f.: 1/(1 -x -x*y/(1 -x -x*y/(1 -x -2*x*y/(1 -x -2*x*y/(1 -x -3*x*y/(1 -x -3*x*y/(1 - ... (continued fraction).
T(n, k) = binomial(n+k, 2*k)*k!
T(n, k) = A155856(n, n-k).
Sum_{k=0..n} T(n, k) = A155857(n).
sum_{k=0..floor(n/2)} T(n, k) = A084261(n).

A156368 A ménage triangle.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 3, 1, 3, 8, 6, 6, 1, 16, 35, 38, 20, 10, 1, 96, 211, 213, 134, 50, 15, 1, 675, 1459, 1479, 915, 385, 105, 21, 1, 5413, 11584, 11692, 7324, 3130, 952, 196, 28, 1, 48800, 103605, 104364, 65784, 28764, 9090, 2100, 336, 36, 1
Offset: 0

Views

Author

Paul Barry, Feb 08 2009

Keywords

Examples

			Triangle begins:
   1;
   0,   1;
   0,   1,   1;
   1,   1,   3,   1;
   3,   8,   6,   6,  1;
  16,  35,  38,  20, 10,  1;
  96, 211, 213, 134, 50, 15,  1;
		

References

  • A. Kaufmann, Introduction à la combinatorique en vue des applications, p.188-189, Dunod, Paris, 1968. - Philippe Deléham, Apr 04 2014

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:= Sum[(-1)^(k+j)*Binomial[j, k]*Binomial[2*n-j, j]*(n-j)!, {j,0,n}];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 05 2021 *)
  • Sage
    def A156368(n,k): return sum( (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*factorial(n-j) for j in (0..n) )
    flatten([[A156368(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021

Formula

T(n, k) = Sum_{j=0..n} (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*(n-j)!.
T(n, 0) = A000271(n).
Sum_{k=0..n} T(n, k) = n!.
Equals A155856*A007318^{-1}.
G.f.: 1/(1 +x -x*y -x/(1 +x -x*y -x/(1 +x -x*y -2*x/(1 +x -x*y -2*x/(1 +x -x*y -3*x/(1 +x -x*y -3*x/(1 +x -x*y -4*x/(1 + ... (continued fraction).
G.f.: Sum_{n>=0} n! * x^n/(1 + (1-y)*x)^(2*n+1). - Ira M. Gessel, Jan 15 2013
Showing 1-5 of 5 results.