Original entry on oeis.org
1, 2, 6, 23, 107, 590, 3786, 27821, 230869, 2137978, 21873854, 245151555, 2987967551, 39358156310, 557259550034, 8440866957273, 136211005966889, 2333068710452146, 42276699542130166, 808068680469402095, 16248405328930779027, 342877404288485770718, 7576652528705018522906
Offset: 0
-
Table[Sum[Binomial[2*n-k,k]*(n-k)!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Feb 08 2014 *)
-
[sum(binomial(2*n-k, k)*factorial(n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 05 2021
Original entry on oeis.org
1, 1, 3, 9, 35, 168, 967, 6538, 50831, 446919, 4383861, 47451921, 561715093, 7217604520, 100031995789, 1487319385140, 23613262336093, 398673670050021, 7132188802005991, 134766129577134553, 2681929390235577831
Offset: 0
-
Table[Sum[Binomial[2*n-3*k, k]*(n-2*k)!, {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 05 2021 *)
-
[sum( binomial(2*n-3*k, k)*factorial(n-2*k) for k in (0..n//2) ) for n in (0..30)] # G. C. Greubel, Jun 05 2021
A161556
Exponential Riordan array [1 + (sqrt(Pi)/2)*x*exp(x^2/4)*erf(x/2), x].
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 6, 0, 30, 0, 15, 0, 1, 0, 42, 0, 70, 0, 21, 0, 1, 24, 0, 168, 0, 140, 0, 28, 0, 1, 0, 216, 0, 504, 0, 252, 0, 36, 0, 1, 120, 0, 1080, 0, 1260, 0, 420, 0, 45, 0, 1
Offset: 0
Triangle begins
1;
0, 1;
1, 0, 1;
0, 3, 0, 1;
2, 0, 6, 0, 1;
0, 10, 0, 10, 0, 1;
6, 0, 30, 0, 15, 0, 1;
0, 42, 0, 70, 0, 21, 0, 1;
24, 0, 168, 0, 140, 0, 28, 0, 1;
Production matrix begins
0, 1;
1, 0, 1;
0, 2, 0, 1;
-1, 0, 3, 0, 1;
0, -4, 0, 4, 0, 1;
6, 0, -10, 0, 5, 0, 1;
0, 36, 0, -20, 0, 6, 0, 1;
-
T[n_, k_] := Boole[k <= n] Binomial[n, k] ((n-k)/2)! (1 + (-1)^(n-k))/2; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 30 2016 *)
A156367
Triangle T(n, k) = binomial(n+k, 2*k)*k!, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 6, 10, 6, 1, 10, 30, 42, 24, 1, 15, 70, 168, 216, 120, 1, 21, 140, 504, 1080, 1320, 720, 1, 28, 252, 1260, 3960, 7920, 9360, 5040, 1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320, 1, 45, 660, 5544, 30888, 120120, 327600, 604800, 685440, 362880
Offset: 0
Triangle begins
1;
1, 1;
1, 3, 2;
1, 6, 10, 6;
1, 10, 30, 42, 24;
1, 15, 70, 168, 216, 120;
1, 21, 140, 504, 1080, 1320, 720;
1, 28, 252, 1260, 3960, 7920, 9360, 5040;
1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320;
-
Flatten[Table[Binomial[n+k,2k]k!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 17 2015 *)
-
flatten([[factorial(k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021
A156368
A ménage triangle.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 1, 1, 3, 1, 3, 8, 6, 6, 1, 16, 35, 38, 20, 10, 1, 96, 211, 213, 134, 50, 15, 1, 675, 1459, 1479, 915, 385, 105, 21, 1, 5413, 11584, 11692, 7324, 3130, 952, 196, 28, 1, 48800, 103605, 104364, 65784, 28764, 9090, 2100, 336, 36, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
1, 1, 3, 1;
3, 8, 6, 6, 1;
16, 35, 38, 20, 10, 1;
96, 211, 213, 134, 50, 15, 1;
- A. Kaufmann, Introduction à la combinatorique en vue des applications, p.188-189, Dunod, Paris, 1968. - Philippe Deléham, Apr 04 2014
-
T[n_,k_]:= Sum[(-1)^(k+j)*Binomial[j, k]*Binomial[2*n-j, j]*(n-j)!, {j,0,n}];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 05 2021 *)
-
def A156368(n,k): return sum( (-1)^(k+j)*binomial(j, k)*binomial(2*n-j, j)*factorial(n-j) for j in (0..n) )
flatten([[A156368(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021
Showing 1-5 of 5 results.
Comments