cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155858 Diagonal sums of triangle A155856.

Original entry on oeis.org

1, 1, 3, 9, 35, 168, 967, 6538, 50831, 446919, 4383861, 47451921, 561715093, 7217604520, 100031995789, 1487319385140, 23613262336093, 398673670050021, 7132188802005991, 134766129577134553, 2681929390235577831
Offset: 0

Views

Author

Paul Barry, Jan 29 2009

Keywords

Crossrefs

Cf. A155856.

Programs

  • Mathematica
    Table[Sum[Binomial[2*n-3*k, k]*(n-2*k)!, {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 05 2021 *)
  • Sage
    [sum( binomial(2*n-3*k, k)*factorial(n-2*k) for k in (0..n//2) ) for n in (0..30)] # G. C. Greubel, Jun 05 2021

Formula

G.f.: 1/(1 -x^2 -x/(1 -x^2 -x/(1 -x^2 -2*x/(1 -x^2 -2*x/(1 -x^2 -3*x/(1 -x^2 -3*x/(1 - ... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k, k)*(n-2*k)!.
Conjecture: a(n) -(n-1)*a(n-1) -(n-2)*a(n-2) +(n-3)*a(n-3) +(n-10)*a(n-4) -5*a(n-5) +3*a(n-6) +3*a(n-7) = 0. - R. J. Mathar, Feb 05 2015
a(n) ~ n! * (1 + 2/n + 1/n^2 - 2/(3*n^3) - 22/(3*n^4) - 491/(15*n^5) - 11467/(90*n^6) - ...). - Vaclav Kotesovec, Jun 05 2021