A155861 a(n) is the smallest integer k such that the n-th (backward) difference of the partition sequence A000041 is positive from k onwards.
1, 2, 8, 26, 68, 134, 228, 352, 510, 704, 934, 1204, 1514, 1866, 2260, 2702, 3188, 3722, 4304, 4936, 5620, 6354, 7140, 7980, 8872, 9822, 10826, 11888, 13006, 14182, 15416, 16712, 18066, 19480, 20956, 22494, 24096, 25760, 27486, 29278, 31134
Offset: 0
Keywords
Links
- Jean-François Alcover, Table of n, a(n) for n = 0..60
- Gert Almkvist, On the differences of the partition function, Acta Arith., 61.2 (1992), 173-181.
- Hansraj Gupta, Finite Differences of the Partition Function, Math. Comp. 32 (1978), 1241-1243.
- Charles Knessl, Asymptotic Behavior of High-Order Differences of the Partition Function, Communications on Pure and Applied Mathematics, 44 (1991), 1033-1045.
- A. M. Odlyzko, Differences of the partition function, Acta Arith., 49 (1988), 237-254.
- Eric Weisstein's World of Mathematics, Backward Difference
Programs
-
Maple
A41:= n-> `if` (n<0, 0, combinat[numbpart](n)): DB:= proc(p) proc(n) option remember; p(n) -p(n-1) end end: a:= proc(n) option remember; local f, k; if n=0 then 1 else f:= (DB@@n)(A41); for k from a(n-1) while not (f(k)>0 and f(k+1)>0) do od; k fi end: seq(a(n), n=0..20);
-
Mathematica
a[n_] := a[n] = Module[{f}, f[i_] = DifferenceDelta[PartitionsP[i], {i, n}]; For[j = 2, True, j++, If[f[j] > 0 && f[j + 1] > 0, Return[j + n]]]]; a[0] = 1; a[1] = 2; Table[Print[n, " ", a[n]]; a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 04 2020 *)
Formula
An asymptotic formula is a(n) ~ 6/Pi^2 * n^2 (log n)^2.
Comments