cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155867 A 'Morgan Voyce' transform of the large Schroeder numbers A006318.

Original entry on oeis.org

1, 3, 13, 65, 355, 2061, 12501, 78323, 503033, 3294373, 21916883, 147708777, 1006330457, 6919474163, 47956087733, 334658965641, 2349535729811, 16583609673797, 117608812053277, 837626242775875, 5988634758319665
Offset: 0

Views

Author

Paul Barry, Jan 29 2009

Keywords

Comments

Image of A006318 under the Riordan array (1/(1-x), x/(1-x)^2).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-3*x+x^2 -Sqrt(1-10*x+19*x^2-10*x^3+x^4))/(2*x*(1-x)) )); // G. C. Greubel, Jun 09 2021
    
  • Mathematica
    A006318[n_]:= 2*Hypergeometric2F1[-n+1, n+2, 2, -1];
    A155867[n_]:= Sum[Binomial[n+j, 2*j]*A006318[j], {j,0,n}];
    Table[A155867[n], {n, 0, 40}] (* G. C. Greubel, Jun 09 2021 *)
  • Sage
    def A155867_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-3*x+x^2 -sqrt(1-10*x+19*x^2-10*x^3+x^4))/(2*x*(1-x)) ).list()
    A155867_list(40) # G. C. Greubel, Jun 09 2021

Formula

G.f.: (1 - 3*x + x^2 - sqrt(1 - 10*x + 19*x^2 - 10*x^3 + x^4))/(2*x*(1-x)).
G.f.: 1/(1 -x -2*x/(1 -x -x/(1 -x -2*x/(1 -x -x/(1 -x -2*x/(1 -x -x/(1 - ... (continued fraction).
a(n) = Sum_{k=0..n} binomial(n+k,2k)*A006318(k).
a(n) = Sum_{k=0..n} A085478(n,k)*A006318(k). - Philippe Deléham, Jan 31 2009
Conjecture: (n+1)*a(n) + (4-11*n)*a(n-1) + (29*n-43)*a(n-2) +(73-29*n)*a(n-3) + (11*n-40)*a(n-4) + (5-n)*a(n-5) = 0. - R. J. Mathar, Jul 24 2012
The above recurrence follows from the differential equation (4*x^4 - 14*x^3 + 15*x^2 - 7*x + 1)*A(x) - (x^6 - 11*x^5 + 29*x^4 - 29*x^3 + 11*x^2 - x)*A'(x) + x^4 - x^3 + x - 1 = 0 satisfied by the g.f. A(x). - Peter Bala, Sep 15 2024