A155883 a(n) = 14*n^3 - 30*n^2 + 24*n - 7.
1, 33, 173, 505, 1113, 2081, 3493, 5433, 7985, 11233, 15261, 20153, 25993, 32865, 40853, 50041, 60513, 72353, 85645, 100473, 116921, 135073, 155013, 176825, 200593, 226401, 254333, 284473, 316905, 351713, 388981, 428793, 471233, 516385, 564333, 615161, 668953
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- David Z Crookes, De Pulchritudine Numerorum Figuratorum (On the Beauty of Figurate Numbers), Mathematics in School, Vol. 17, No. 3 (May, 1988), pp. 38-39.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A003215.
Programs
-
Magma
I:=[1, 33, 173, 505]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
-
Mathematica
CoefficientList[Series[(1+29*x+47*x^2+7*x^3)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
Formula
From N. J. A. Sloane, Feb 16 2025: (Start)
Let h(i) denote the centered hexagonal number A003215(i). Then for n >= 1,
a(n) = h(2*n-2) + 2*Sum_{i=n-1..2*n-3} h(i).
E.g. a(3) = h(2) + h(3) + h(4) + h(3) + h(2), as in the COMMENTS.
This sequence should really have had offset 0, not 1, which would have given a simpler formula. (End)
G.f.: x*(1+29*x+47*x^2+7*x^3)/(1-x)^4. - Colin Barker, Jun 16 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
E.g.f.: 7 + exp(x)*(-7 + 8*x + 12*x^2 + 14*x^3). - Elmo R. Oliveira, Sep 02 2025
Extensions
More terms from Colin Barker, Jun 16 2012
New name using explicit formula from Joerg Arndt, Jan 15 2021
Edited by N. J. A. Sloane, Feb 16 2025
Comments