cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155883 a(n) = 14*n^3 - 30*n^2 + 24*n - 7.

Original entry on oeis.org

1, 33, 173, 505, 1113, 2081, 3493, 5433, 7985, 11233, 15261, 20153, 25993, 32865, 40853, 50041, 60513, 72353, 85645, 100473, 116921, 135073, 155013, 176825, 200593, 226401, 254333, 284473, 316905, 351713, 388981, 428793, 471233, 516385, 564333, 615161, 668953
Offset: 1

Views

Author

David Z Crookes, Jan 29 2009

Keywords

Comments

A three-dimensional version of the centered hexagonal numbers (A003215). Two examples: the third term 173 is built up as 19 + 37 + 61 + 37 + 19 and the fourth term 505 is built up as 37 + 61 + 91 + 127 + 91 + 61 + 37.
The sequence's digital roots are 1, 6, 2 (repeat).

Crossrefs

Cf. A003215.

Programs

  • Magma
    I:=[1, 33, 173, 505]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]];  // Vincenzo Librandi, Jun 30 2012
  • Mathematica
    CoefficientList[Series[(1+29*x+47*x^2+7*x^3)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)

Formula

From N. J. A. Sloane, Feb 16 2025: (Start)
Let h(i) denote the centered hexagonal number A003215(i). Then for n >= 1,
a(n) = h(2*n-2) + 2*Sum_{i=n-1..2*n-3} h(i).
E.g. a(3) = h(2) + h(3) + h(4) + h(3) + h(2), as in the COMMENTS.
This sequence should really have had offset 0, not 1, which would have given a simpler formula. (End)
G.f.: x*(1+29*x+47*x^2+7*x^3)/(1-x)^4. - Colin Barker, Jun 16 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
E.g.f.: 7 + exp(x)*(-7 + 8*x + 12*x^2 + 14*x^3). - Elmo R. Oliveira, Sep 02 2025

Extensions

More terms from Colin Barker, Jun 16 2012
New name using explicit formula from Joerg Arndt, Jan 15 2021
Edited by N. J. A. Sloane, Feb 16 2025