A155997 Triangle read by rows: T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 + (-1)^k)/2.
2, 1, 1, 2, 0, 2, 1, 3, 3, 1, 2, 0, 12, 0, 2, 1, 5, 10, 10, 5, 1, 2, 0, 30, 0, 30, 0, 2, 1, 7, 21, 35, 35, 21, 7, 1, 2, 0, 56, 0, 140, 0, 56, 0, 2, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 2, 0, 90, 0, 420, 0, 420, 0, 90, 0, 2, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
Examples
Triangle begins as: 2; 1, 1; 2, 0, 2; 1, 3, 3, 1; 2, 0, 12, 0, 2; 1, 5, 10, 10, 5, 1; 2, 0, 30, 0, 30, 0, 2; 1, 7, 21, 35, 35, 21, 7, 1; 2, 0, 56, 0, 140, 0, 56, 0, 2; 1, 9, 36, 84, 126, 126, 84, 36, 9, 1; 2, 0, 90, 0, 420, 0, 420, 0, 90, 0, 2;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k)*(2 + (-1)^k*(1 + (-1)^n))/2 ))); # G. C. Greubel, Dec 01 2019
-
Magma
[Binomial(n, k)*(2+(-1)^k*(1+(-1)^n))/2: k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 01 2019
-
Maple
seq(seq( binomial(n, k)*(2+(-1)^k*(1+(-1)^n))/2, k=0..n), n=0..12); # G. C. Greubel, Dec 01 2019
-
Mathematica
f[n_, k_]:= (Binomial[n, k] + (-1)^k*Binomial[n, k])/2; Table[f[n,k]+f[n,n-k], {n,0,10}, {k,0,n}]//Flatten Table[Binomial[n, k]*(2+(-1)^k*(1+(-1)^n))/2, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 01 2019 *)
-
PARI
T(n,k) = binomial(n, k)*(2 + (-1)^k*(1 + (-1)^n))/2; \\ G. C. Greubel, Dec 01 2019
-
Sage
[[binomial(n, k)*(2+(-1)^k*(1+(-1)^n))/2 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Dec 01 2019
Formula
T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 + (-1)^k)/2.
From G. C. Greubel, Dec 01 2019: (Start)
T(n, k) = binomial(n, k)*(2 + (-1)^k*(1 + (-1)^n))/2.
Sum_{k=0..n} T(n,k) = 2^n for n >= 1.
Sum_{k=0..n-1} T(n,k) = (2^(n+1) - 3 - (-1)^n)/2 = A140253(n), n >= 2. (End)
Comments