cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155998 Triangle read by rows: T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 - (-1)^k)/2.

Original entry on oeis.org

0, 1, 1, 0, 4, 0, 1, 3, 3, 1, 0, 8, 0, 8, 0, 1, 5, 10, 10, 5, 1, 0, 12, 0, 40, 0, 12, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 16, 0, 112, 0, 112, 0, 16, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 20, 0, 240, 0, 504, 0, 240, 0, 20, 0
Offset: 0

Views

Author

Roger L. Bagula, Feb 01 2009

Keywords

Comments

Row sums are: A155559(n) = {0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...}.

Examples

			Triangle begins as:
  0;
  1,  1;
  0,  4,  0;
  1,  3,  3,   1;
  0,  8,  0,   8,   0;
  1,  5, 10,  10,   5,   1;
  0, 12,  0,  40,   0,  12,  0;
  1,  7, 21,  35,  35,  21,  7,   1;
  0, 16,  0, 112,   0, 112,  0,  16, 0;
  1,  9, 36,  84, 126, 126, 84,  36, 9,  1;
  0, 20,  0, 240,   0, 504,  0, 240, 0, 20, 0;
		

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k)*(2 - (-1)^k*(1 + (-1)^n))/2 ))); # G. C. Greubel, Dec 01 2019
  • Magma
    [Binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2: k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 01 2019
    
  • Maple
    seq(seq( binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2, k=0..n), n=0..12); # G. C. Greubel, Dec 01 2019
  • Mathematica
    f[n_, k_]:= Binomial[n, k]*(1 - (-1)^k)/2; Table[f[n,k]+f[n,n-k], {n, 0, 10}, {k, 0, n}]//Flatten
    Table[Binomial[n, k]*(2-(-1)^k*(1+(-1)^n))/2, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 01 2019 *)
  • PARI
    T(n,k) = binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2; \\ G. C. Greubel, Dec 01 2019
    
  • Sage
    [[binomial(n, k)*(2 - (-1)^k*(1+(-1)^n))/2 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Dec 01 2019
    

Formula

T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 - (-1)^k)/2.
From G. C. Greubel, Dec 01 2019: (Start)
T(n, k) = binomial(n, k)*(2 - (-1)^k*(1 + (-1)^n))/2.
Sum_{k=0..n} T(n,k) = 2^n = A155559(n) for n >= 1.
Sum_{k=0..n-1} T(n,k) = (2^(n+1) - (1-(-1)^n))/2 = A051049(n), n >= 1. (End)