cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156006 Triangle, read by rows, T(n, k) = ((n-k)/(n+k))*binomial(n+k, n) + (k/(2*n-k))*binomial(2*n -k, n), with T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 10, 8, 1, 1, 18, 23, 23, 18, 1, 1, 47, 56, 56, 56, 47, 1, 1, 138, 152, 138, 138, 152, 138, 1, 1, 436, 456, 372, 330, 372, 456, 436, 1, 1, 1438, 1465, 1111, 847, 847, 1111, 1465, 1438, 1, 1, 4871, 4906, 3586, 2431, 2002, 2431, 3586, 4906, 4871, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 01 2009

Keywords

Comments

Row sums are A068875(n): {1, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, ...}.

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    2,    1;
  1,    4,    4,    1;
  1,    8,   10,    8,    1;
  1,   18,   23,   23,   18,    1;
  1,   47,   56,   56,   56,   47,    1;
  1,  138,  152,  138,  138,  152,  138,    1;
  1,  436,  456,  372,  330,  372,  456,  436,    1;
  1, 1438, 1465, 1111,  847,  847, 1111, 1465, 1438,    1;
  1, 4871, 4906, 3586, 2431, 2002, 2431, 3586, 4906, 4871, 1;
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return ((n-k)/n)*Binomial(n+k-1, k) + (k/(n-k))*Binomial(2*n-k-1, n);
        fi; end;
    Flat(List([1..15], n-> List([1..n], k-> T(n,k) )));
  • Magma
    function T(n,k)
      if k eq n then return 1;
      else return ((n-k)/n)*Binomial(n+k-1, k) + (k/(n-k))*Binomial(2*n-k-1, n);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 02 2019
    
  • Maple
    seq(seq( `if`(k=n, 1, ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n)), k=0..n), n=0..10); # G. C. Greubel, Dec 02 2019
  • Mathematica
    T[n_, k_]:= If[n==0, 1, ((n-k)/(n+k))*Binomial[n+k, n] + (k/(2*n-k))*Binomial[2*n -k, n]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    T(n,k) = if(k==n, 1, ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n) ); \\ G. C. Greubel, Dec 02 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==n): return 1
        else: return ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 02 2019
    

Formula

T(n, k) = ((n-k)/(n+k))*binomial(n+k, n) + (k/(2*n-k))*binomial(2*n -k, n), with T(0,0) = 1.
From G. C. Greubel, Dec 02 2019: (Start)
T(n, k) = ((n-k)/n)*binomial(n+k-1, k) + (k/(n-k))*binomial(2*n-k-1, n), with T(n,n) = 1.
Sum_{k=0..n} T(n, k) = A068875(n).
Sum_{k=1..n-1} T(n,k) = A128634(n), n >= 1. (End)

Extensions

Edited by G. C. Greubel, Dec 02 2019