cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156019 Numerators in an infinite sum for Pi.

Original entry on oeis.org

3, 15, 73, 1, 2, 3, 7, 1, 2, 2, 1, 2, 1, 3, 1, 2, 6, 1, 1, 3, 1, 6, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 2, 6, 1, 2, 3, 1, 1, 1, 45, 22, 2, 1, 1, 24, 2, 1, 2, 1, 2, 4, 2, 8, 5, 1, 1, 1, 2, 7, 1, 3, 1, 7, 4, 7, 3, 3, 9, 9, 1, 18, 3, 15, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

For k >= 0, define Q(k) = A002485(2k)/A002486(2k) (convergents to Pi that are less than Pi), so Pi = Sum_{k>=1} (Q(k) - Q(k-1)). Then a(n) is the numerator of Q(n) - Q(n-1).

Examples

			a(2) = 15 since A002485(4)/A002486(4) = 333/106, A002485(2)/A002486(2) = 3/1, and 333/106 - 3/1 = 15/106 (see table below).
Pi = 3/1 + 15/106 + 73/877203 + 1/2195225334 + 2/17599271777 + 3/360950005720 + 7/17348726394920 + ....
.
  n  Q(n) = A002485(2n)/A002486(2n)  Q(n) - Q(n-1)  a(n)
  -  ------------------------------  -------------  ----
  0       0/1     = 0                     -           -
  1       3/1     = 3                    3/1          3
  2     333/106   = 3.1415094339...     15/106       15
  3  103993/33102 = 3.1415926530...     73/877203    73
		

Crossrefs

Cf. A000796, A002485, A002486, A156020 (denominators).

Formula

a(n) = numerator(A002485(2n)/A002486(2n) - A002485(2n-2)/A002486(2n-2)).

Extensions

More terms from Alexander R. Povolotsky, Sep 01 2009
Edited by Jon E. Schoenfield, Jan 04 2022
More terms from Jinyuan Wang, Jun 29 2022