cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A114977 Numbers k such that (j^k + k^j) == 0 (mod k+j), j=2 case.

Original entry on oeis.org

1, 2, 8, 128, 2144, 4808, 12872, 14168, 32377, 33672, 45992, 116192, 185768, 186824, 271208, 426008, 484177, 524288, 601352, 612768, 755792, 996032, 1878368, 2262752, 3094247, 4325960, 4810808, 6331808, 6707352, 10037792, 10908137, 11475128, 12672992, 13705232
Offset: 1

Views

Author

Zak Seidov, Feb 22 2006

Keywords

Comments

From Robert G. Wilson v, Aug 02 2021: (Start)
Prime terms: 2, then A156048.
The exponents of the powers of two which are terms: 0, 1, then A014741(n)+1.
The vast majority of terms are congruent to 8 (mod 24); no terms are congruent to 4 (mod 6) nor to 3 (mod 10).
(End)

Crossrefs

Cf. A156038 (odd terms), A156048 (odd prime terms).

Programs

Extensions

a(9)-a(22) from Michel Marcus, Oct 10 2013
a(23)-a(34) from Hiroaki Yamanouchi, Sep 26 2015

A156048 Odd prime numbers p with the property that (2^p + p^2) == 0 (mod (p+2)).

Original entry on oeis.org

32377, 10908137, 34030327, 4860035567, 7656800897, 13398374537, 41162676047, 49277997407, 169906146727, 429221023247, 517971170207, 1587472376807, 1692526508927, 2687542461767, 2827976112047, 2918988711407, 3538852646177, 3843606175697, 3868058416007, 4090897510247
Offset: 1

Views

Author

Zak Seidov, Oct 31 2009

Keywords

Comments

Subsequence of A114977 and of A156038. - Michel Marcus, Oct 19 2013

Crossrefs

Programs

  • PARI
    isok(n) = isprime(n) && (n != 2) && ((2^n+n^2)% (n+2) == 0); \\ Michel Marcus, Oct 19 2013
    
  • PARI
    is(n)=Mod(2,n+2)^n==-4 && n>2 && isprime(n) \\ Charles R Greathouse IV, Oct 19 2013

Extensions

a(5) from Zak Seidov, Oct 31 2009
a(6)-a(8) from Juri-Stepan Gerasimov, Jan 16 2020
Terms a(9) and beyond from Giovanni Resta, Jan 23 2020
Showing 1-2 of 2 results.