cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156039 Number of compositions (ordered partitions) of n into 4 parts, where the first is at least as great as each of the others.

Original entry on oeis.org

1, 1, 4, 7, 11, 17, 26, 35, 48, 63, 81, 102, 127, 154, 187, 223, 263, 308, 359, 413, 474, 540, 612, 690, 775, 865, 964, 1069, 1181, 1301, 1430, 1565, 1710, 1863, 2025, 2196, 2377, 2566, 2767, 2977, 3197, 3428, 3671, 3923, 4188, 4464, 4752, 5052, 5365, 5689
Offset: 0

Views

Author

Jack W Grahl, Feb 02 2009, Feb 11 2009

Keywords

Comments

For n=1,2 these are just the tetrahedral numbers. a(n) is always at least 1/4 of the corresponding tetrahedral number, since each partition of this type gives up to four ordered partitions with the same cyclical order.
Diagonal sums of the irregular triangle A109439, for example a(0)=1, a(1)=1, a(2)=1+3, a(3)=1+3+3, a(4)=1+3+6+1. - Bob Selcoe, Feb 09 2014

Examples

			For n = 3 the a(3) = 7 compositions are: (3 0 0 0) (2 1 0 0) (2 0 1 0) (2 0 0 1) (1 1 1 0) (1 1 0 1) (1 0 1 1).
		

Crossrefs

For partitions into 3 summands see A156040; also see A156041 and A156042.

Programs

  • Maple
    a:= proc(n) local m, r; m:= iquo(n, 12, 'r'); r:= r+1; (9 +(27 +72*m +18*r)*m +((9 +3*r) *r-12) /2)*m +[1, 1, 4, 7, 11, 17, 26, 35, 48, 63, 81, 102][r] end: seq(a(n), n=0..60); # Alois P. Heinz, Jun 14 2009
  • Mathematica
    LinearRecurrence[{2, -1, 1, -1, -1, 1, -1, 2, -1}, {1, 1, 4, 7, 11, 17, 26, 35, 48}, 60] (* Jean-François Alcover, May 17 2018 *)

Formula

G.f.: ( 1-x+3*x^2-x^3+x^4 ) / ( (1+x)*(1+x^2)*(1+x+x^2)*(x-1)^4 ). - Alois P. Heinz, Jun 14 2009

Extensions

More terms from Alois P. Heinz, Jun 14 2009