A156041 Array A(n,k) (n>=1, k>=1) read by antidiagonals, where A(n,k) is the number of compositions (ordered partitions) of n into exactly k parts, some of which may be zero, with the first part greater than or equal to all the rest.
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 4, 4, 1, 1, 3, 6, 7, 5, 1, 1, 4, 8, 11, 11, 6, 1, 1, 4, 11, 17, 19, 16, 7, 1, 1, 5, 13, 26, 32, 31, 22, 8, 1, 1, 5, 17, 35, 54, 56, 48, 29, 9, 1, 1, 6, 20, 48, 82, 102, 93, 71, 37, 10, 1, 1, 6, 24, 63, 120, 172, 180, 148, 101, 46, 11, 1, 1, 7, 28, 81, 170
Offset: 1
Examples
The array A(n,k) begins: 1 1 1 1 1 1 1 1 1 ... 1 2 3 4 5 6 7 8 9 ... 1 2 4 7 11 16 22 29 ... 1 3 6 11 19 31 48 ... 1 3 8 17 32 56 ... 1 4 11 26 54 ... 1 4 13 35 ... ... The antidiagonals are: 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 4, 4, 1, 1, 3, 6, 7, 5, 1, 1, 4, 8, 11, 11, 6, 1, 1, 4, 11, 17, 19, 16, 7, 1, 1, 5, 13, 26, 32, 31, 22, 8, 1, ... A(3,5) = 11 and the 11 partition of 3 into 5 parts of this type are: (3,0,0,0,0), (2,1,0,0,0), (2,0,1,0,0), (2,0,0,1,0), (2,0,0,0,1), (1,1,1,0,0), (1,1,0,1,0), (1,1,0,0,1), (1,0,1,1,0), (1,0,1,0,1), (1,0,0,1,1).
Links
- R. H. Hardin, Table of n, a(n) for n = 1..2278
- Michele Graffeo, Sergej Monavari, Riccardo Moschetti, and Andrea T. Ricolfi, Enumeration of partitions via socle reduction, arXiv:2501.10267 [math.CO], 2025. See p. 32.
Crossrefs
Programs
-
Maple
b:= proc(n, i, m) option remember; if n<0 then 0 elif n=0 then 1 elif i=1 then `if`(n<=m, 1, 0) else add(b(n-k, i-1, m), k=0..m) fi end: A:= (n, k)-> add(b(n-m, k-1, m), m=ceil(n/k)..n): seq(seq(A(d-k, k), k=1..d-1), d=1..14); # Alois P. Heinz, Jun 14 2009
-
Mathematica
(* Returns rectangular array *) nn=10;Table[Table[Coefficient[Series[Sum[x^i((1-x^(i+1))/(1-x))^(k-1),{i,0,n}],{x,0,nn}],x^n],{k,1,nn}],{n,1,nn}]//Grid (* Geoffrey Critzer, Jul 15 2013 *)
Formula
A(n,k) = [x^n] Sum_{i=0..n} x^i*((1 - x^(i+1))/(1-x))^(k-1). - Geoffrey Critzer, Jul 15 2013
Extensions
More terms from Alois P. Heinz, Jun 14 2009
Edited by N. J. A. Sloane, Feb 26 2011
Comments