A156047 Triangle read by rows: T(n, k) = (n+1)!*(1/k + 1/(n-k+1)).
4, 9, 9, 32, 24, 32, 150, 100, 100, 150, 864, 540, 480, 540, 864, 5880, 3528, 2940, 2940, 3528, 5880, 46080, 26880, 21504, 20160, 21504, 26880, 46080, 408240, 233280, 181440, 163296, 163296, 181440, 233280, 408240, 4032000, 2268000, 1728000, 1512000, 1451520, 1512000, 1728000, 2268000, 4032000
Offset: 1
Examples
Triangle begins as: 4; 9, 9; 32, 24, 32; 150, 100, 100, 150; 864, 540, 480, 540, 864; 5880, 3528, 2940, 2940, 3528, 5880; 46080, 26880, 21504, 20160, 21504, 26880, 46080;
Links
- G. C. Greubel, Rows n = 1..100 of triangle, flattened
Programs
-
GAP
Flat(List([1..10], n-> List([1..n], k-> (n+1)*Factorial(n+1)/(k*(n-k+1)) ))); # G. C. Greubel, Dec 02 2019
-
Magma
[(n+1)*Factorial(n+1)/(k*(n-k+1)): k in [1..n], n in [1..10]]; // G. C. Greubel, Dec 02 2019
-
Maple
seq(seq( (n+1)*(n+1)!/(k*(n-k+1)), k=1..n), n=1..10); # G. C. Greubel, Dec 02 2019
-
Mathematica
Table[(n+1)*(n+1)!/(k*(n-k+1)), {n,10}, {k,n}]//Flatten (* modified by G. C. Greubel, Dec 02 2019 *)
-
PARI
T(n,k) = (n+1)*(n+1)!/(k*(n-k+1)); \\ G. C. Greubel, Dec 02 2019
-
Sage
[[(n+1)*factorial(n+1)/(k*(n-k+1)) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Dec 02 2019
Formula
T(n, k) = (n+1)*(n+1)!/(k*(n-k+1)).
Sum_{k=1..n} T(n,k) = 2*(n+1)!*H(n), where H(n) is the harmonic number. - G. C. Greubel, Dec 02 2019
Extensions
Offset changed by G. C. Greubel, Dec 02 2019
Comments