cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156052 Triangle read by rows: T(n, k) = binomial(n, k)/Beta(n+1, n-k+1) + binomial(n, n-k)/Beta(n+1, k+1).

Original entry on oeis.org

2, 8, 8, 33, 48, 33, 144, 240, 240, 144, 635, 1240, 1260, 1240, 635, 2778, 6510, 6720, 6720, 6510, 2778, 12019, 33600, 38430, 33600, 38430, 33600, 12019, 51488, 168672, 223776, 184800, 184800, 223776, 168672, 51488, 218799, 824400, 1275120, 1119888, 900900, 1119888, 1275120, 824400, 218799
Offset: 0

Views

Author

Roger L. Bagula, Feb 02 2009

Keywords

Comments

Row sums are 2*A108666(n+1): {2, 16, 114, 768, 5010, 32016, 201698, 1257472, 7777314, 47800080, 292292946, ...}.

Examples

			Triangle begins as:
      2;
      8,      8;
     33,     48,     33;
    144,    240,    240,    144;
    635,   1240,   1260,   1240,    635;
   2778,   6510,   6720,   6720,   6510,   2778;
  12019,  33600,  38430,  33600,  38430,  33600,  12019;
  51488, 168672, 223776, 184800, 184800, 223776, 168672, 51488;
		

Programs

  • GAP
    B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> (k+1)*B(n+1, k+1)*( B(2*n-k+1, n+1) + B(n+k+1, n+1) ) ))); # G. C. Greubel, Dec 01 2019
  • Magma
    B:=Binomial; [(k+1)*B(n+1, k+1)*( B(2*n-k+1, n+1) + B(n+k+1, n+1) ): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 01 2019
    
  • Maple
    b:=binomial; seq(seq( (k+1)*b(n+1, k+1)*( b(2*n-k+1, n+1) + b(n+k+1, n+1) ), k=0..n), n=0..10); # G. C. Greubel, Dec 01 2019
  • Mathematica
    Table[Binomial[n, k]/Beta[n+1, n-k+1] + Binomial[n, n-k]/Beta[n+1, k+1], {n, 0, 10}, {k, 0, n}]//FlattenTable[(k+1)*Binomial[n+1, k+1]*(Binomial[n+k+1, n+1] + Binomial[2*n-k+1, n+1]), {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 01 2019 *)
  • PARI
    T(n, k) = my(b=binomial); (k+1)*b(n+1, k+1)*( b(2*n-k+1, n+1) + b(n+k+1, n+1) ); \\ G. C. Greubel, Dec 01 2019
    
  • Sage
    b=binomial; [[(k+1)*b(n+1, k+1)*( b(2*n-k+1, n+1) + b(n+k+1, n+1) ) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 01 2019
    

Formula

T(n, k) = binomial(n, k)/Beta(n+1, n-k+1) + binomial(n, n-k)/Beta(n+1, k+1).
T(n, k) = (k+1)*binomial(n+1, k+1)*( binomial(2*n-k+1, n+1) + binomial(n+k+1, n+1) ). - G. C. Greubel, Dec 01 2019