cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156067 a(0)=1. a(n)= -2^(n-1)-3*(-1)^n, n>1.

Original entry on oeis.org

1, 2, -5, -1, -11, -13, -35, -61, -131, -253, -515, -1021, -2051, -4093, -8195, -16381, -32771, -65533, -131075, -262141, -524291, -1048573, -2097155, -4194301, -8388611, -16777213, -33554435, -67108861, -134217731, -268435453, -536870915, -1073741821, -2147483651
Offset: 0

Views

Author

Paul Curtz, Feb 03 2009

Keywords

Comments

The main diagonal of the array of A153130 and its successive differences.
A154589 is the second upper diagonal of the array.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{1,2},{2,-5},40]] (* Harvey P. Dale, Dec 11 2011 *)

Formula

a(n)= +a(n-1) +2*a(n-2), n>2.
G.f.: x*(-2+7*x) / ( (1+x)*(2*x-1) ).
a(n) == A153130(n) (mod 9).
a(n+1)-2*a(n) = (-1)^n*9, n>0.
a(n) = A154589(n)-3*(-1)^n.
a(n)+a(n+3) = -A005010(n-1) = -9*A131577(n).
a(2*n)+a(2*n+1) = -3*2^(2n-1) = -A002023(n-2).