A156096 Inverse binomial transform of A030186.
1, 1, 4, 6, 18, 32, 84, 164, 400, 824, 1928, 4096, 9360, 20240, 45632, 99680, 223008, 489984, 1091392, 2405952, 5345536, 11806592, 26194048, 57917440, 128389376, 284057856, 629392384, 1393010176, 3085685248, 6830825472, 15128761344
Offset: 0
Keywords
Examples
a(3) = 6 = (-1, 3, -3, 1) dot (1, 2, 7, 22) = (-1, 6, -21, 22) = 6.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,4,2).
Crossrefs
Cf. A030186.
Programs
-
GAP
a:=[1,1,4];; for n in [4..40] do a[n]:=4*a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Oct 27 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)/(1-4*x^2-2*x^3) )); // G. C. Greubel, Oct 27 2019 -
Maple
seq(coeff(series((1+x)/(1-4*x^2-2*x^3), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 27 2019
-
Mathematica
LinearRecurrence[{0,4,2},{1,1,4},40] (* Harvey P. Dale, Apr 05 2014 *)
-
PARI
my(x='x+O('x^40)); Vec((1+x)/(1-4*x^2-2*x^3)) \\ G. C. Greubel, Oct 27 2019
-
Sage
def A156096_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x)/(1-4*x^2-2*x^3)).list() A156096_list(40) # G. C. Greubel, Oct 27 2019
Formula
From R. J. Mathar, Feb 10 2009: (Start)
a(n) = 4*a(n-2) + 2*a(n-3).
G.f.: (1+x)/(1-4*x^2-2*x^3). (End)
Extensions
More terms from R. J. Mathar, Feb 10 2009
Comments