cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156096 Inverse binomial transform of A030186.

Original entry on oeis.org

1, 1, 4, 6, 18, 32, 84, 164, 400, 824, 1928, 4096, 9360, 20240, 45632, 99680, 223008, 489984, 1091392, 2405952, 5345536, 11806592, 26194048, 57917440, 128389376, 284057856, 629392384, 1393010176, 3085685248, 6830825472, 15128761344
Offset: 0

Views

Author

Gary W. Adamson, Feb 03 2009

Keywords

Comments

A030186 = (1, 2, 7, 22, 71, 228, 733, 2356, 7573, 24342, ...).

Examples

			a(3) = 6 = (-1, 3, -3, 1) dot (1, 2, 7, 22) = (-1, 6, -21, 22) = 6.
		

Crossrefs

Cf. A030186.

Programs

  • GAP
    a:=[1,1,4];; for n in [4..40] do a[n]:=4*a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Oct 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)/(1-4*x^2-2*x^3) )); // G. C. Greubel, Oct 27 2019
    
  • Maple
    seq(coeff(series((1+x)/(1-4*x^2-2*x^3), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 27 2019
  • Mathematica
    LinearRecurrence[{0,4,2},{1,1,4},40] (* Harvey P. Dale, Apr 05 2014 *)
  • PARI
    my(x='x+O('x^40)); Vec((1+x)/(1-4*x^2-2*x^3)) \\ G. C. Greubel, Oct 27 2019
    
  • Sage
    def A156096_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x)/(1-4*x^2-2*x^3)).list()
    A156096_list(40) # G. C. Greubel, Oct 27 2019
    

Formula

a(n) = A007318^(-1) * A030186
From R. J. Mathar, Feb 10 2009: (Start)
a(n) = 4*a(n-2) + 2*a(n-3).
G.f.: (1+x)/(1-4*x^2-2*x^3). (End)

Extensions

More terms from R. J. Mathar, Feb 10 2009