cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A156126 Sequence related to Hankel transform of super-ballot numbers.

Original entry on oeis.org

1, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680
Offset: 0

Views

Author

Paul Barry, Feb 04 2009

Keywords

Comments

Hankel transform of A007272 is 10,35,84,... with g.f. (10-5x+4x^2-x^3)/(1-x)^4.
Hankel transform of A156125 is 10^(n^2-1+0^n)*A156126(n).

Programs

  • Magma
    I:=[1, 35, 84, 165, 286]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
  • Mathematica
    CoefficientList[Series[(1+31x-50x^2+35x^3-9x^4)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
    LinearRecurrence[{4,-6,4,-1},{1,35,84,165,286},40] (* Harvey P. Dale, Mar 25 2022 *)

Formula

G.f.: (1+31x-50x^2+35x^3-9x^4)/(1-x)^4.
a(n) = (2*n+5)*(2*n+3)*(n+2)/3, n>0. - R. J. Mathar, Oct 13 2011
Showing 1-1 of 1 results.