A156136 A triangle of polynomial coefficients related to Mittag-Leffler polynomials: p(x,n)=Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x).
1, 2, 2, 3, 12, 4, 4, 36, 48, 8, 5, 80, 240, 160, 16, 6, 150, 800, 1200, 480, 32, 7, 252, 2100, 5600, 5040, 1344, 64, 8, 392, 4704, 19600, 31360, 18816, 3584, 128, 9, 576, 9408, 56448, 141120, 150528, 64512, 9216, 256, 10, 810, 17280, 141120, 508032
Offset: 0
Examples
1; 2, 2; 3, 12, 4; 4, 36, 48, 8; 5, 80, 240, 160, 16; 6, 150, 800, 1200, 480, 32; 7, 252, 2100, 5600, 5040, 1344, 64; 8, 392, 4704, 19600, 31360, 18816, 3584, 128; 9, 576, 9408, 56448, 141120, 150528, 64512, 9216, 256; 10, 810, 17280, 141120, 508032, 846720, 645120, 207360, 23040, 512;
References
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 75-76
Programs
-
Mathematica
Clear[t0, p, x, n, m]; p[x_, n_] = Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x); Table[FullSimplify[ExpandAll[p[x, n]]], {n, 1, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 1, 10}]; Flatten[%]
Formula
p(x,n)=Sum[Binomial[n, k]*Binomial[n - 1, n - k]*2^k*x^k, {k, 0, n}]/(2*x);
p(x,n)=n Hypergeometric2F1[1 - n, 1 - n, 2, 2 x];
t(n,m)=coefficiemts(p(x,n))
T(n,m) = 2^m*A103371(n,m). - R. J. Mathar, Dec 05 2017