A156138 Q_{2n+1}(sqrt(2))/sqrt(2) (see A104035).
1, 17, 901, 99917, 18991081, 5514615017, 2270974911661, 1258937450889317, 903952433274722641, 816101554527859690817, 904827968753139590344021, 1208617989532834039606507517, 1914312457105234828011498655801, 3547500444096776665586928259547417, 7604155838367549221056955383942297981
Offset: 0
Examples
G.f. = 1 + 17*x + 901*x^2 + 99917*x^3 + 18991081*x^4 + 5514615017*x^5 + ... - _Michael Somos_, Aug 19 2018
Links
- G. C. Greubel, Table of n, a(n) for n = 0..207
Crossrefs
Programs
-
Maple
with(gfun): series(sin(x)/(1-3*sin(x)^2), x, 30): L := seriestolist(%): seq(op(2*i, L)*(2*i-1)!, i = 1..floor((1/2)*nops(L))); # Peter Bala, Feb 06 2017
-
Mathematica
With[{nmax = 50}, CoefficientList[Series[Sin[x]/(1 - 3*Sin[x]^2), {x, 0, nmax}], x]*Range[0, nmax]!][[2 ;; ;; 2]] (* G. C. Greubel, Aug 17 2018 *)
-
PARI
x='x+O('x^50); v=Vec(serlaplace(sin(x)/(1 - 3*sin(x)^2))); vector((#v-1)\2 ,n,v[2*n-1]) \\ G. C. Greubel, Aug 17 2018
Formula
E.g.f.: sin(x)/(1 - 3*sin(x)^2) = x + 17*x^3/3! + 901*x^5/5! + 99917*x^7/7! + ... - Peter Bala, Feb 06 2017