A156184
A generalized recursion triangle sequence : m=1; t(n,k)=(k + m - 1)*t(n - 1, k, m) + (m*n - k + 1 - m)*t(n - 1, k - 1, m).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 16, 7, 1, 1, 11, 53, 53, 11, 1, 1, 16, 150, 318, 150, 16, 1, 1, 22, 380, 1554, 1554, 380, 22, 1, 1, 29, 892, 6562, 12432, 6562, 892, 29, 1, 1, 37, 1987, 25038, 82538, 82538, 25038, 1987, 37, 1, 1, 46, 4270, 89023, 480380, 825380, 480380
Offset: 0
{1},
{1, 1},
{1, 2, 1},
{1, 4, 4, 1},
{1, 7, 16, 7, 1},
{1, 11, 53, 53, 11, 1},
{1, 16, 150, 318, 150, 16, 1},
{1, 22, 380, 1554, 1554, 380, 22, 1},
{1, 29, 892, 6562, 12432, 6562, 892, 29, 1},
{1, 37, 1987, 25038, 82538, 82538, 25038, 1987, 37, 1},
{1, 46, 4270, 89023, 480380, 825380, 480380, 89023, 4270, 46, 1}
-
m = 1; e[n_, 0, m_] := 1;
e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n;
e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n}], {n, 0, 10}];
Flatten[%]
A156186
Triangle: m=3; e(n,k,n) = (k + m - 1)*e(n - 1, k, m) + (m*n - k + 1 - m)*e(n - 1, k - 1, m); t(n,k) = e(n,k,m) + e(n,n-k,m).
Original entry on oeis.org
2, 1, 1, 1, 6, 1, 1, 30, 30, 1, 1, 159, 360, 159, 1, 1, 1119, 3639, 3639, 1119, 1, 1, 10932, 41262, 57414, 41262, 10932, 1, 1, 136764, 582642, 898632, 898632, 582642, 136764, 1, 1, 2031933, 9957168, 16634718, 17182152, 16634718, 9957168, 2031933, 1, 1
Offset: 0
{2},
{1, 1},
{1, 6, 1},
{1, 30, 30, 1},
{1, 159, 360, 159, 1},
{1, 1119, 3639, 3639, 1119, 1},
{1, 10932, 41262, 57414, 41262, 10932, 1},
{1, 136764, 582642, 898632, 898632, 582642, 136764, 1},
{1, 2031933, 9957168, 16634718, 17182152, 16634718, 9957168, 2031933, 1},...
-
m = 3; e[n_, 0, m_] := 1;
e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n;
e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}];
Flatten[%]
A156188
Triangle: m=5; e(n,k,n)=(k + m - 1)*e(n - 1, k, m) + (m*n - k + 1 - m)*e(n - 1, k - 1, m); t(n,k)=e(n,k,m)+e(n,n-k,m).
Original entry on oeis.org
2, 1, 1, 1, 10, 1, 1, 80, 80, 1, 1, 775, 1520, 775, 1, 1, 10915, 25945, 25945, 10915, 1, 1, 213720, 542910, 624670, 542910, 213720, 1, 1, 5245530, 14690640, 16408670, 16408670, 14690640, 5245530, 1, 1, 151534685, 479956020, 553630850, 464654480
Offset: 0
{2},
{1, 1},
{1, 10, 1},
{1, 80, 80, 1},
{1, 775, 1520, 775, 1},
{1, 10915, 25945, 25945, 10915, 1},
{1, 213720, 542910, 624670, 542910, 213720, 1},
{1, 5245530, 14690640, 16408670, 16408670, 14690640, 5245530, 1},...
-
m = 5; e[n_, 0, m_] := 1;
e[n_, k_, m_] := 0 /; k >= n;
e[n_, k_, 1] := 1 /; k >= n;
e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m];
Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}];
Flatten[%]
Showing 1-3 of 3 results.
Comments