A156184 A generalized recursion triangle sequence : m=1; t(n,k)=(k + m - 1)*t(n - 1, k, m) + (m*n - k + 1 - m)*t(n - 1, k - 1, m).
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 7, 16, 7, 1, 1, 11, 53, 53, 11, 1, 1, 16, 150, 318, 150, 16, 1, 1, 22, 380, 1554, 1554, 380, 22, 1, 1, 29, 892, 6562, 12432, 6562, 892, 29, 1, 1, 37, 1987, 25038, 82538, 82538, 25038, 1987, 37, 1, 1, 46, 4270, 89023, 480380, 825380, 480380
Offset: 0
Examples
{1}, {1, 1}, {1, 2, 1}, {1, 4, 4, 1}, {1, 7, 16, 7, 1}, {1, 11, 53, 53, 11, 1}, {1, 16, 150, 318, 150, 16, 1}, {1, 22, 380, 1554, 1554, 380, 22, 1}, {1, 29, 892, 6562, 12432, 6562, 892, 29, 1}, {1, 37, 1987, 25038, 82538, 82538, 25038, 1987, 37, 1}, {1, 46, 4270, 89023, 480380, 825380, 480380, 89023, 4270, 46, 1}
Links
- Eric Weisstein's World of Mathematics, Second-Order Eulerian Triangle.
Programs
-
Mathematica
m = 1; e[n_, 0, m_] := 1; e[n_, k_, m_] := 0 /; k >= n; e[n_, k_, 1] := 1 /; k >= n; e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m]; Table[Table[e[n, k, m], {k, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
t(n,k) = (k + m - 1)*t(n - 1, k, m) + (m*n - k + 1 - m)*t(n - 1, k - 1, m).
Comments