A156186 Triangle: m=3; e(n,k,n) = (k + m - 1)*e(n - 1, k, m) + (m*n - k + 1 - m)*e(n - 1, k - 1, m); t(n,k) = e(n,k,m) + e(n,n-k,m).
2, 1, 1, 1, 6, 1, 1, 30, 30, 1, 1, 159, 360, 159, 1, 1, 1119, 3639, 3639, 1119, 1, 1, 10932, 41262, 57414, 41262, 10932, 1, 1, 136764, 582642, 898632, 898632, 582642, 136764, 1, 1, 2031933, 9957168, 16634718, 17182152, 16634718, 9957168, 2031933, 1, 1
Offset: 0
Examples
{2}, {1, 1}, {1, 6, 1}, {1, 30, 30, 1}, {1, 159, 360, 159, 1}, {1, 1119, 3639, 3639, 1119, 1}, {1, 10932, 41262, 57414, 41262, 10932, 1}, {1, 136764, 582642, 898632, 898632, 582642, 136764, 1}, {1, 2031933, 9957168, 16634718, 17182152, 16634718, 9957168, 2031933, 1},...
Programs
-
Mathematica
m = 3; e[n_, 0, m_] := 1; e[n_, k_, m_] := 0 /; k >= n; e[n_, k_, 1] := 1 /; k >= n; e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m]; Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}]; Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
m=3; e(n,k,n) = (k + m - 1)*e(n - 1, k, m) + (m*n - k + 1 - m)*e(n - 1, k - 1, m);
t(n,k) = e(n,k,m) + e(n,n-k,m).