A156195 a(2n+2) = 6*a(2n+1), a(2n+1) = 6*a(2n) - 5^n*A000108(n), a(0)=1.
1, 5, 30, 175, 1050, 6250, 37500, 224375, 1346250, 8068750, 48412500, 290343750, 1742062500, 10450312500, 62701875000, 376177734375, 2257066406250, 13541839843750, 81251039062500, 487496738281250, 2924980429687500, 17549718554687500, 105298311328125000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, A Note on a One-Parameter Family of Catalan-Like Numbers, JIS 12 (2009) 09.5.4.
Programs
-
Magma
[n le 3 select Factorial(n+3)/24 else (6*n*Self(n-1) + 20*(n-3)*Self(n-2) - 120*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
-
Maple
A156195 := proc(n) option remember; local nh; if n= 0 then 1; elif type(n,'even') then 6*procname(n-1); else nh := floor(n/2) ; 6*procname(n-1)-5^nh*A000108(nh) ; end if; end proc: # R. J. Mathar, Jul 21 2016
-
Mathematica
CoefficientList[Series[(Sqrt[1-20x^2]+10x-1)/(10x(1-6x)),{x,0,30}],x] (* Harvey P. Dale, Oct 21 2016 *)
-
SageMath
def a(n): # a = A156195 if (n==0): return 1 elif (n%2==1): return 6*a(n-1) - 5^((n-1)/2)*catalan_number((n-1)/2) else: return 6*a(n-1) [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022
Formula
a(n) = Sum_{k=0..n} A120730(n,k)*5^k.
G.f.: (sqrt(1-20*x^2) +10*x -1)/(10*x*(1-6*x)). - Philippe Deléham, Feb 05 2009
(n+1)*a(n) = 6*(n+1)*a(n-1) + 20*(n-2)*a(n-2) - 120*(n-2)*a(n-3). - R. J. Mathar, Jul 21 2016
Extensions
Corrected and extended by Harvey P. Dale, Oct 21 2016
Comments