cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156197 T(n,k) = A009766(n,k) + A009766(n,n-k), triangle read by rows.

Original entry on oeis.org

2, 2, 2, 3, 4, 3, 6, 8, 8, 6, 15, 18, 18, 18, 15, 43, 47, 42, 42, 47, 43, 133, 138, 110, 96, 110, 138, 133, 430, 436, 324, 240, 240, 324, 436, 430, 1431, 1438, 1036, 682, 550, 682, 1036, 1438, 1431, 4863, 4871, 3476, 2156, 1430, 1430, 2156, 3476, 4871, 4863
Offset: 0

Views

Author

Roger L. Bagula, Feb 05 2009

Keywords

Examples

			Triangle begins:
      2;
      2,    2;
      3,    4,    3;
      6,    8,    8,    6;
     15,   18,   18,   18,   15;
     43,   47,   42,   42,   47,   43;
    133,  138,  110,   96,  110,  138,  133;
    430,  436,  324,  240,  240,  324,  436,  430;
   1431, 1438, 1036,  682,  550,  682, 1036, 1438, 1431;
   4863, 4871, 3476, 2156, 1430, 1430, 2156, 3476, 4871, 4863;
    ...
		

Crossrefs

Row sums: 2*A000108(n+1).

Programs

  • Mathematica
    t0[n_, m_] = Binomial[n + m, n] - Binomial[n + m, m - 1];
    T[n_, m_] = FullSimplify[t0[n, m] + t0[n, n - m]];
    Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}] // Flatten
    (* or *)
    Table[Table[((1 - k + n)*Binomial[k + n, n] + (1 + k)*Binomial[-k + 2*n, n])/(1 + n), {k, 0, n}], {n, 0, 10}] // Flatten (* Roger L. Bagula and Gary W. Adamson, Dec 03 2009 *)
  • Maxima
    A009766(n, k) := binomial(n + k, n)*(n - k + 1)/(n + 1)$
    create_list(A009766(n, k) + A009766(n, n - k), n, 0, 10, k, 0, n); /* Franck Maminirina Ramaharo, Dec 11 2018 */

Formula

T(n,k) = -binomial(k + n, -1 + k) + binomial(k + n, n) + binomial(-k + 2*n, n) - binomial(-k + 2*n, -1 - k + n).
From Roger L. Bagula and Gary W. Adamson, Dec 03 2009: (Start)
T(n,k) = ((n - k + 1)*binomial(n + k, n) + (k + 1)*binomial(-k + 2*n, n))/(n + 1).
T(n,k) = A009766(n,k) + A033184(n,k). (End)
G.f.: (C(t*x) + C(x)*(1 - x*C(t*x) - t*x*C(t*x)))/((1 - t*x*C(x))*(1 - x*C(t*x))), where C(x) = (1 - sqrt(1 - 4*x))/(2*x). - Franck Maminirina Ramaharo, Dec 11 2018

Extensions

Edited by Franck Maminirina Ramaharo, Dec 11 2018