A156197 T(n,k) = A009766(n,k) + A009766(n,n-k), triangle read by rows.
2, 2, 2, 3, 4, 3, 6, 8, 8, 6, 15, 18, 18, 18, 15, 43, 47, 42, 42, 47, 43, 133, 138, 110, 96, 110, 138, 133, 430, 436, 324, 240, 240, 324, 436, 430, 1431, 1438, 1036, 682, 550, 682, 1036, 1438, 1431, 4863, 4871, 3476, 2156, 1430, 1430, 2156, 3476, 4871, 4863
Offset: 0
Examples
Triangle begins: 2; 2, 2; 3, 4, 3; 6, 8, 8, 6; 15, 18, 18, 18, 15; 43, 47, 42, 42, 47, 43; 133, 138, 110, 96, 110, 138, 133; 430, 436, 324, 240, 240, 324, 436, 430; 1431, 1438, 1036, 682, 550, 682, 1036, 1438, 1431; 4863, 4871, 3476, 2156, 1430, 1430, 2156, 3476, 4871, 4863; ...
Links
- L. Carlitz and J. Riordan, Two element lattice permutation numbers and their q-generalization, Duke Math. J. Volume 31, Number 3 (1964), 371-388.
Crossrefs
Row sums: 2*A000108(n+1).
Programs
-
Mathematica
t0[n_, m_] = Binomial[n + m, n] - Binomial[n + m, m - 1]; T[n_, m_] = FullSimplify[t0[n, m] + t0[n, n - m]]; Table[Table[T[n, m], {m, 0, n}], {n, 0, 10}] // Flatten (* or *) Table[Table[((1 - k + n)*Binomial[k + n, n] + (1 + k)*Binomial[-k + 2*n, n])/(1 + n), {k, 0, n}], {n, 0, 10}] // Flatten (* Roger L. Bagula and Gary W. Adamson, Dec 03 2009 *)
-
Maxima
A009766(n, k) := binomial(n + k, n)*(n - k + 1)/(n + 1)$ create_list(A009766(n, k) + A009766(n, n - k), n, 0, 10, k, 0, n); /* Franck Maminirina Ramaharo, Dec 11 2018 */
Formula
T(n,k) = -binomial(k + n, -1 + k) + binomial(k + n, n) + binomial(-k + 2*n, n) - binomial(-k + 2*n, -1 - k + n).
From Roger L. Bagula and Gary W. Adamson, Dec 03 2009: (Start)
T(n,k) = ((n - k + 1)*binomial(n + k, n) + (k + 1)*binomial(-k + 2*n, n))/(n + 1).
G.f.: (C(t*x) + C(x)*(1 - x*C(t*x) - t*x*C(t*x)))/((1 - t*x*C(x))*(1 - x*C(t*x))), where C(x) = (1 - sqrt(1 - 4*x))/(2*x). - Franck Maminirina Ramaharo, Dec 11 2018
Extensions
Edited by Franck Maminirina Ramaharo, Dec 11 2018