A156264 a(n) = A000002(3*n-2), where A000002 is the Kolakoski sequence.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12000
Programs
-
PARI
up_to = 12000; v000002 = [1, 2, 2]; m=3; while(length(v000002) < 3*(1+up_to), v000002 = concat( v000002, vector(v000002[m], i, 2-m%2)); m++); \\ after PARI-code in A000002. A000002(n) = v000002[n]; A156264(n) = A000002((3*n)-2); \\ Antti Karttunen, Dec 15 2017