A156286 Triangle T(n, k) = (1/k^n)*Product_{j=1..n} ( (k-1)*(k+1)^j + 1 ), read by rows.
1, 1, 10, 1, 140, 1419, 1, 5740, 242649, 3350536, 1, 700280, 165729267, 7853656384, 161827775045, 1, 255602200, 452606628177, 92036999164096, 6040221703554625, 193317016162131576, 1, 279628806800, 4943822199577371, 5392815929021041024, 1352701610289354714125, 132670761753844630766736, 6731905265314349384346775
Offset: 1
Examples
Triangle begins as: 1; 1, 10; 1, 140, 1419; 1, 5740, 242649, 3350536; 1, 700280, 165729267, 7853656384, 161827775045;
Links
- G. C. Greubel, Rows n = 1..25 of the triangle, flattened
Crossrefs
Cf. A156173.
Programs
-
Magma
A156286:= func< n,k | (&*[(k-1)*(k+1)^j + 1: j in [1..n]])/k^n >; [A156286(n,k): k in [1..n], n in [1..10]]; // G. C. Greubel, Jan 02 2022
-
Mathematica
T[n_, k_]:= (1/k^n)*Product[(k-1)*(k+1)^j +1, {j,n}]; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Jan 02 2022 *)
-
Sage
def A156286(n,k): return (1/k^n)*product( (k-1)*(k+1)^j +1 for j in (1..n) ) flatten([[A156286(n,k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Jan 02 2022
Formula
T(n, k) = Product_{j=1..n} ( (k+1)^j - Sum_{i=0..k-1} (k+1)^i ).
T(n, k) = (1/k^n)*Product_{j=1..n} ( (k-1)*(k+1)^j + 1 ). - G. C. Greubel, Jan 02 2022
Extensions
Edited by G. C. Greubel, Jan 02 2022