A156303 G.f.: A(x) = exp( Sum_{n>=1} sigma(n^2)*x^n/n ), a power series in x with integer coefficients.
1, 1, 4, 8, 20, 38, 88, 162, 336, 624, 1211, 2195, 4109, 7295, 13190, 23072, 40618, 69838, 120486, 204006, 345595, 577387, 962961, 1588483, 2613930, 4262138, 6928799, 11179251, 17976330, 28720552, 45729595, 72401921, 114239033
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 4*x^2 + 8*x^3 + 20*x^4 + 38*x^5 + 88*x^6 +... log(A(x)) = x + 7*x^2/2 + 13*x^3/3 + 31*x^4/4 + 31*x^5/5 + 127*x^6/6 +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Exp[Sum[Sum[k*Sum[MoebiusMu[d]^2 / d, {d, Divisors @ k}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n,sigma(m^2)*x^m/m)+x*O(x^n)),n)}
-
PARI
{a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(k^2)*a(n-k)))}
Formula
a(n) = (1/n)*Sum_{k=1..n} sigma(k^2) * a(n-k) for n>0, with a(0)=1.
Euler transform of Dedekind psi function, cf. A001615. - Vladeta Jovovic, Feb 12 2009
a(n) ~ exp(3^(4/3) * (5*Zeta(3))^(1/3) * n^(2/3) / (2*Pi)^(2/3) - Pi^(2/3) * n^(1/3) / (2^(4/3) * (15*Zeta(3))^(1/3)) + 1/12 - Pi^2 / (720 * Zeta(3))) * (5*Zeta(3))^(7/36) / (A * 2^(2/9) * 3^(11/36) * Pi^(29/36) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 24 2018
Comments