A156304 G.f.: A(x) = exp( Sum_{n>=1} sigma(n^3)*x^n/n ), a power series in x with integer coefficients.
1, 1, 8, 21, 77, 199, 661, 1663, 4852, 12382, 33289, 82877, 213026, 518109, 1279852, 3053404, 7312985, 17093793, 39952528, 91661695, 209709116, 473095589, 1062567288, 2359804486, 5214774263, 11415904502, 24860918943, 53709881911
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 8*x^2 + 21*x^3 + 77*x^4 + 199*x^5 + 661*x^6 +... log(A(x)) = x + 15*x^2/2 + 40*x^3/3 + 127*x^4/4 + 156*x^5/5 + 600*x^6/6 +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n,sigma(m^3)*x^m/m)+x*O(x^n)),n)}
-
PARI
{a(n)=if(n==0,1,(1/n)*sum(k=1,n,sigma(k^3)*a(n-k)))}
Formula
a(n) = (1/n)*Sum_{k=1..n} sigma(k^3) * a(n-k) for n>0, with a(0)=1.
log(a(n)) ~ 4*Pi*c^(1/4)*n^(3/4) / (3^(5/4)*5^(1/4)), where c = A330595 = Product_{primes p} (1 + 1/p^2 + 1/p^3) = 1.74893299784324530303390699... - Vaclav Kotesovec, Nov 01 2024
Comments