cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156343 Primes with equal number of prime and nonprime digits.

Original entry on oeis.org

13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 1033, 1123, 1153, 1213, 1217, 1229, 1231, 1259, 1279, 1283, 1297, 1303, 1307, 1321, 1367, 1423, 1427, 1433, 1453, 1531, 1543, 1559, 1567, 1571, 1579, 1583, 1597, 1627, 1637, 1657, 1721, 1747, 1759, 1783, 1787
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 08 2009

Keywords

Comments

Prime digits are 2, 3, 5 or 7. Nonprime digits are 0, 1, 4, 6, 8 or 9.
Complement of (A154385 U A154386). [Juri-Stepan Gerasimov, Nov 29 2009]

Examples

			13 (1=nonprime, 3=prime) = a(1).
		

Crossrefs

Programs

  • Maple
    A109066c := proc(n) nops(convert(n,base,10))-A109066(n) ; end:
    A109066 := proc(n) local dgs,a ; dgs := convert(n,base,10) ; a := 0 ; for i in dgs do if isprime(i) then a := a+1 ; fi; od: a ; end:
    for i from 1 to 400 do p := ithprime(i) ; if A109066(p) = A109066c(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Feb 09 2009
  • Mathematica
    Select[Prime[Range[5,300]],Length[Select[IntegerDigits[#],PrimeQ]]==Length[ Select[ IntegerDigits[ #],!PrimeQ[ #]&]]&] (* Harvey P. Dale, Dec 15 2022 *)
  • Python
    from sympy import isprime
    def ok(n):
        if not isprime(n): return False
        s, counts = str(n), [0, 0]
        for c in s: counts[int(c in "2357")] += 1
        return counts[0] == counts[1]
    print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Apr 23 2024