A371352 Prime numbers such that the sum of their prime digits is equal to the sum of their nonprime digits.
167, 211, 541, 617, 761, 853, 1021, 1201, 1423, 1559, 1607, 1973, 2011, 2143, 2341, 2383, 2833, 3467, 3719, 3823, 3917, 4051, 4231, 4637, 4673, 5261, 5443, 5519, 5591, 6473, 6521, 6701, 7193, 7643, 7687, 7867, 8053, 8233, 8677, 9137, 9173, 9371, 9551
Offset: 1
Examples
9173 is a term because it is a prime number whose prime digits and nonprime digits have the same sum: 3 + 7 = 1 + 9 = 10.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[1200]], Plus @@ Select[d = IntegerDigits[#], PrimeQ[#1] &] == Plus @@ Select[d, ! PrimeQ[#1] &] &] (* Amiram Eldar, Mar 22 2024 *)
-
Python
from sympy import isprime def ok(n): if not isprime(n): return False s, sums = str(n), [0, 0] for c in s: sums[int(c in "2357")] += int(c) return sums[0] == sums[1] print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Apr 23 2024
Comments