cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156354 Triangle T(n, k) = k^(n-k) + (n-k)^k with T(0, 0) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 32, 54, 32, 6, 1, 1, 7, 57, 145, 145, 57, 7, 1, 1, 8, 100, 368, 512, 368, 100, 8, 1, 1, 9, 177, 945, 1649, 1649, 945, 177, 9, 1, 1, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 1, 1, 11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 08 2009

Keywords

Comments

This sequence is an approximation of Pascal's triangle with interior Kurtosis.
Essentially the same as A055652. - R. J. Mathar, Feb 19 2009

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  2,   1;
  1,  3,   3,    1;
  1,  4,   8,    4,     1;
  1,  5,  17,   17,     5,     1;
  1,  6,  32,   54,    32,     6,     1;
  1,  7,  57,  145,   145,    57,     7,     1;
  1,  8, 100,  368,   512,   368,   100,     8,    1;
  1,  9, 177,  945,  1649,  1649,   945,   177,    9,   1;
  1, 10, 320, 2530,  5392,  6250,  5392,  2530,  320,  10,  1;
  1, 11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11, 1;
The interior Kurtosis, T(n,k) - binomial(n, k), is:
  0;
  0, 0;
  0, 0,   0;
  0, 0,   0,    0;
  0, 0,   2,    0,     0;
  0, 0,   7,    7,     0,     0;
  0, 0,  17,   34,    17,     0,     0;
  0, 0,  36,  110,   110,    36,     0,     0;
  0, 0,  72,  312,   442,   312,    72,     0,    0;
  0, 0, 141,  861,  1523,  1523,   861,   141,    0,   0;
  0, 0, 275, 2410,  5182,  5998,  5182,  2410,  275,   0, 0;
  0, 0, 538, 6908, 18455, 22939, 22939, 18455, 6908, 538, 0, 0;
		

Crossrefs

Cf. A026898.

Programs

  • Magma
    [k eq 0 select 1 else k^(n-k) + (n-k)^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    T[n_, k_]:= If[n==0, 1, (k^(n-k) + (n-k)^k)];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
  • Sage
    flatten([[1 if k==n else k^(n-k) + (n-k)^k for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Mar 07 2021
    

Formula

T(n, k) = k^(n-k) + (n-k)^k with T(0, 0) = 1.
T(n, k) = T(n, n-k).
Sum_{k=0..n} T(n,k) = [n=0] + 2*A026898(n-1). - G. C. Greubel, Mar 07 2021

Extensions

Edited by G. C. Greubel, Mar 07 2021