A156354 Triangle T(n, k) = k^(n-k) + (n-k)^k with T(0, 0) = 1, read by rows.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 32, 54, 32, 6, 1, 1, 7, 57, 145, 145, 57, 7, 1, 1, 8, 100, 368, 512, 368, 100, 8, 1, 1, 9, 177, 945, 1649, 1649, 945, 177, 9, 1, 1, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 1, 1, 11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 4, 8, 4, 1; 1, 5, 17, 17, 5, 1; 1, 6, 32, 54, 32, 6, 1; 1, 7, 57, 145, 145, 57, 7, 1; 1, 8, 100, 368, 512, 368, 100, 8, 1; 1, 9, 177, 945, 1649, 1649, 945, 177, 9, 1; 1, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 1; 1, 11, 593, 7073, 18785, 23401, 23401, 18785, 7073, 593, 11, 1; The interior Kurtosis, T(n,k) - binomial(n, k), is: 0; 0, 0; 0, 0, 0; 0, 0, 0, 0; 0, 0, 2, 0, 0; 0, 0, 7, 7, 0, 0; 0, 0, 17, 34, 17, 0, 0; 0, 0, 36, 110, 110, 36, 0, 0; 0, 0, 72, 312, 442, 312, 72, 0, 0; 0, 0, 141, 861, 1523, 1523, 861, 141, 0, 0; 0, 0, 275, 2410, 5182, 5998, 5182, 2410, 275, 0, 0; 0, 0, 538, 6908, 18455, 22939, 22939, 18455, 6908, 538, 0, 0;
Links
- G. C. Greubel, Rows n = 0..30 of the triangle, flattened
Crossrefs
Cf. A026898.
Programs
-
Magma
[k eq 0 select 1 else k^(n-k) + (n-k)^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 07 2021
-
Mathematica
T[n_, k_]:= If[n==0, 1, (k^(n-k) + (n-k)^k)]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
-
Sage
flatten([[1 if k==n else k^(n-k) + (n-k)^k for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Mar 07 2021
Formula
T(n, k) = k^(n-k) + (n-k)^k with T(0, 0) = 1.
T(n, k) = T(n, n-k).
Sum_{k=0..n} T(n,k) = [n=0] + 2*A026898(n-1). - G. C. Greubel, Mar 07 2021
Extensions
Edited by G. C. Greubel, Mar 07 2021
Comments