cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156367 Triangle T(n, k) = binomial(n+k, 2*k)*k!, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 6, 1, 10, 30, 42, 24, 1, 15, 70, 168, 216, 120, 1, 21, 140, 504, 1080, 1320, 720, 1, 28, 252, 1260, 3960, 7920, 9360, 5040, 1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320, 1, 45, 660, 5544, 30888, 120120, 327600, 604800, 685440, 362880
Offset: 0

Views

Author

Paul Barry, Feb 08 2009

Keywords

Examples

			Triangle begins
  1;
  1,  1;
  1,  3,   2;
  1,  6,  10,    6;
  1, 10,  30,   42,    24;
  1, 15,  70,  168,   216,   120;
  1, 21, 140,  504,  1080,  1320,   720;
  1, 28, 252, 1260,  3960,  7920,  9360,  5040;
  1, 36, 420, 2772, 11880, 34320, 65520, 75600, 40320;
		

Crossrefs

Cf. A084261 (diagonal sums), A155856 (row reversal), A155857 (row sums)

Programs

  • Mathematica
    Flatten[Table[Binomial[n+k,2k]k!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 17 2015 *)
  • Sage
    flatten([[factorial(k)*binomial(n+k, 2*k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021

Formula

G.f.: 1/(1 -x -x*y/(1 -x -x*y/(1 -x -2*x*y/(1 -x -2*x*y/(1 -x -3*x*y/(1 -x -3*x*y/(1 - ... (continued fraction).
T(n, k) = binomial(n+k, 2*k)*k!
T(n, k) = A155856(n, n-k).
Sum_{k=0..n} T(n, k) = A155857(n).
sum_{k=0..floor(n/2)} T(n, k) = A084261(n).