cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156529 Triangle, T(n, k) = A008517(n+1, k+1)*A008517(n+1, n-k+1), read by rows.

Original entry on oeis.org

1, 2, 2, 6, 64, 6, 24, 1276, 1276, 24, 120, 23088, 107584, 23088, 120, 720, 422712, 6388800, 6388800, 422712, 720, 5040, 8156160, 326165400, 1031694400, 326165400, 8156160, 5040, 40320, 168521184, 15666814800, 126099116000, 126099116000, 15666814800, 168521184, 40320
Offset: 0

Views

Author

Roger L. Bagula, Feb 09 2009

Keywords

Examples

			Triangle begins as:
     1;
     2,       2;
     6,      64,         6;
    24,    1276,      1276,         24;
   120,   23088,    107584,      23088,       120;
   720,  422712,   6388800,    6388800,    422712,     720;
  5040, 8156160, 326165400, 1031694400, 326165400, 8156160, 5040;
		

Crossrefs

Cf. A008517.

Programs

  • Magma
    A008517:= func< n,k | (&+[ (-1)^(n+j)*Binomial(2*n+1, j)*StiringFirst(2*n-k-j+1, n-k-j+1) : j in [0..n-k]]) >;
    A156529:= func< n,k | A008517(n+1,k+1)*A008517(n+1,n-k+1) >;
    [A156529(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2021
    
  • Mathematica
    f[n_, k_]:= f[n, k]= If[k<0 || k>n, 0, If[k==0, 1, (k+1)*f[n-1, k] + (2*n-k+1)*f[n-1, k-1] ]]; (* f = A008517 *)
    T[n_, k_]:= f[n+1, k+1]*f[n+1, n-k+1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Dec 30 2021 *)
  • Sage
    @CachedFunction
    def A008517(n,k): return sum( (-1)^(n+j)*binomial(2*n+1, j)*stirling_number1(2*n-k-j+1, n-k-j+1)  for j in (0..n-k) )
    def A156529(n,k): return A008517(n+1, k+1)*A008517(n+1, n-k+1)
    flatten([[A156529(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 30 2021

Formula

T(n, k) = A008517(n+1, k+1)*A008517(n+1, n-k+1).
From G. C. Greubel, Dec 30 2021: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = n!. (End)

Extensions

Edited by G. C. Greubel, Dec 30 2021