A156529 Triangle, T(n, k) = A008517(n+1, k+1)*A008517(n+1, n-k+1), read by rows.
1, 2, 2, 6, 64, 6, 24, 1276, 1276, 24, 120, 23088, 107584, 23088, 120, 720, 422712, 6388800, 6388800, 422712, 720, 5040, 8156160, 326165400, 1031694400, 326165400, 8156160, 5040, 40320, 168521184, 15666814800, 126099116000, 126099116000, 15666814800, 168521184, 40320
Offset: 0
Examples
Triangle begins as: 1; 2, 2; 6, 64, 6; 24, 1276, 1276, 24; 120, 23088, 107584, 23088, 120; 720, 422712, 6388800, 6388800, 422712, 720; 5040, 8156160, 326165400, 1031694400, 326165400, 8156160, 5040;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A008517.
Programs
-
Magma
A008517:= func< n,k | (&+[ (-1)^(n+j)*Binomial(2*n+1, j)*StiringFirst(2*n-k-j+1, n-k-j+1) : j in [0..n-k]]) >; A156529:= func< n,k | A008517(n+1,k+1)*A008517(n+1,n-k+1) >; [A156529(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2021
-
Mathematica
f[n_, k_]:= f[n, k]= If[k<0 || k>n, 0, If[k==0, 1, (k+1)*f[n-1, k] + (2*n-k+1)*f[n-1, k-1] ]]; (* f = A008517 *) T[n_, k_]:= f[n+1, k+1]*f[n+1, n-k+1]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Dec 30 2021 *)
-
Sage
@CachedFunction def A008517(n,k): return sum( (-1)^(n+j)*binomial(2*n+1, j)*stirling_number1(2*n-k-j+1, n-k-j+1) for j in (0..n-k) ) def A156529(n,k): return A008517(n+1, k+1)*A008517(n+1, n-k+1) flatten([[A156529(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 30 2021
Formula
Extensions
Edited by G. C. Greubel, Dec 30 2021