A156542 Number of distinct Sophie Germain prime factors of n.
0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 2, 1, 2, 0, 2, 2, 2, 0, 2, 0, 2, 1, 1, 1, 2, 2, 1, 1, 2, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 2, 2, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 3, 0, 2, 1, 1, 1, 2, 0, 1, 2, 2, 0, 2, 0, 1, 2
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[0] cat [&+[#PrimesInInterval(2*p,2*p+1):p in PrimeDivisors(n)]:n in [2..100]]; // Marius A. Burtea, Aug 25 2019
-
Maple
with(numtheory): A101264:=p-> pi(2*p+1)-pi(2*p): seq(add(A101264(p), p in factorset(n)), n=1..100); # Ridouane Oudra, Aug 25 2019
-
Mathematica
Join[{0},Table[Count[FactorInteger[n][[All,1]],?(PrimeQ[2#+1]&)],{n,2,110}]] (* _Harvey P. Dale, Apr 05 2020 *)
Formula
a(n) <= A001221(n).
a(n) = Sum_{p|n} A101264(p), where p is a prime. - Ridouane Oudra, Aug 25 2019
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A005384(k) (see A005384 for an estimate of this sum). - Amiram Eldar, Jun 03 2024