A156582 Square array T(n, k) = (k+2)^binomial(n, 2) with T(n, 0) = n!, read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 27, 24, 1, 1, 5, 64, 729, 120, 1, 1, 6, 125, 4096, 59049, 720, 1, 1, 7, 216, 15625, 1048576, 14348907, 5040, 1, 1, 8, 343, 46656, 9765625, 1073741824, 10460353203, 40320, 1, 1, 9, 512, 117649, 60466176, 30517578125, 4398046511104, 22876792454961, 362880
Offset: 0
Examples
Square array begins as: 1, 1, 1, 1, 1, 1 ...; 1, 1, 1, 1, 1, 1 ...; 2, 3, 4, 5, 6, 7 ...; 6, 27, 64, 125, 216, 343 ...; 24, 729, 4096, 15625, 46656, 117649 ...; 120, 59049, 1048576, 9765625, 60466176, 282475249 ...; Antidiagonal triangle begins as: 1; 1, 1; 1, 1, 2; 1, 1, 3, 6; 1, 1, 4, 27, 24; 1, 1, 5, 64, 729, 120; 1, 1, 6, 125, 4096, 59049, 720; 1, 1, 7, 216, 15625, 1048576, 14348907, 5040; 1, 1, 8, 343, 46656, 9765625, 1073741824, 10460353203, 40320;
Links
- G. C. Greubel, Antidiagonal rows n = 0..50, flattened
Programs
-
Magma
A156582:= func< n,k | k eq 0 select Factorial(n) else (k+2)^Binomial(n,2) >; [A156582(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
-
Mathematica
(* First program *) T[n_, k_]:= If[k==0, n!, Product[Sum[Binomial[j-1,i]*(k+1)^i, {i,0,j-1}], {j,n}]]; Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 28 2021 *) (* Second program *) T[n_, k_]:= If[k==0, n!, (k+2)^Binomial[n, 2]]; Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
-
Sage
def A156582(n,k): return factorial(n) if (k==0) else (k+2)^binomial(n,2) flatten([[A156582(k,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
Formula
T(n,k) = Product_{j=1..n} ( Sum_{i=0..j-1} binomial(j-1, i)*(k+1)^i ) with T(n, 0) = n! (square array).
T(n, k) = (k+2)^binomial(n, 2) with T(n, 0) = n! (square array). - G. C. Greubel, Jun 28 2021
Extensions
Edited by G. C. Greubel, Jun 28 2021