cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156601 Triangle T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 7, read by rows.

Original entry on oeis.org

1, 1, 1, 1, -6, 1, 1, 35, 35, 1, 1, -204, 1190, -204, 1, 1, 1189, 40426, 40426, 1189, 1, 1, -6930, 1373295, -8004348, 1373295, -6930, 1, 1, 40391, 46651605, 1584821667, 1584821667, 46651605, 40391, 1, 1, -235416, 1584781276, -313786692648, 1828884203718, -313786692648, 1584781276, -235416, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 11 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,    -6,        1;
  1,    35,       35,          1;
  1,  -204,     1190,       -204,          1;
  1,  1189,    40426,      40426,       1189,        1;
  1, -6930,  1373295,   -8004348,    1373295,    -6930,     1;
  1, 40391, 46651605, 1584821667, 1584821667, 46651605, 40391, 1;
		

Crossrefs

Cf. A007318 (m=0), A034801 (m=4), A156599 (m=5), A156600 (m=6), this sequence (m=7), A156602 (m=8), A156603.
Cf. A053122.

Programs

  • Mathematica
    (* First program *)
    b[n_, k_]:= If[k==n, 2, If[k==n-1 || k==n+1, -1, 0]];
    M[d_]:= Table[b[n, k], {n,d}, {k,d}];
    p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]];
    f= Table[p[x, n], {n,0,20}];
    t[n_, k_]:= If[k==0, n!, Product[f[[j]], {j, n}]/.x->(k+1)];
    T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
    Table[T[n, k, 7], {n,0,12}, {k,0,n}]//TableForm (* modified by G. C. Greubel, Jun 25 2021 *)
    (* Second program *)
    t[n_, k_]:= t[n, k]= If[n==0, 1, If[k==0, (n-1)!, Product[(-1)^j*Simplify[ChebyshevU[j, x/2 - 1]], {j,0,n-1}]/.x->(k+1)]];
    T[n_, k_, m_]:= T[n, k, m]= t[n, m]/(t[k, m]*t[n-k, m]);
    Table[T[n, k, 7], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 25 2021 *)
  • Sage
    @CachedFunction
    def t(n, k):
        if (n==0): return 1
        elif (k==0): return factorial(n-1)
        else: return product( (-1)^j*chebyshev_U(j, (k-1)/2) for j in (0..n-1) )
    def T(n,k,m): return t(n,m)/(t(k,m)*t(n-k,m))
    flatten([[T(n, k, 7) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 25 2021

Formula

T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 7.

Extensions

Edited by G. C. Greubel, Jun 25 2021