A156612 Square array T(n, k) = Product_{j=1..n} A129862(k+1, j) with T(n, 0) = n!, read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 0, 6, 1, 1, -1, 0, 24, 1, 1, -2, -1, 0, 120, 1, 1, -3, -8, -1, 0, 720, 1, 1, -4, -27, 32, 2, 0, 5040, 1, 1, -5, -64, 567, 128, 2, 0, 40320, 1, 1, -6, -125, 3584, 30618, -512, 2, 0, 362880, 1, 1, -7, -216, 14375, 745472, -4317138, -2048, -4, 0, 3628800
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1 ...; 1, 1, 1, 1, 1, 1 ...; 2, 0, -1, -2, -3, -4 ...; 6, 0, -1, -8, -27, -64 ...; 24, 0, -1, 32, 567, 3584 ...; 120, 0, 2, 128, 30618, 745472 ...; Triangle begins as: 1; 1, 1; 1, 1, 2; 1, 1, 0, 6; 1, 1, -1, 0, 24; 1, 1, -2, -1, 0, 120; 1, 1, -3, -8, -1, 0, 720; 1, 1, -4, -27, 32, 2, 0, 5040; 1, 1, -5, -64, 567, 128, 2, 0, 40320; 1, 1, -6, -125, 3584, 30618, -512, 2, 0, 362880; 1, 1, -7, -216, 14375, 745472, -4317138, -2048, -4, 0, 3628800;
Links
- G. C. Greubel, Antidiagonal rows n = 0..50, flattened
Programs
-
Mathematica
(* First program *) b[n_, k_, d_]:= If[n==k, 2, If[(k==d && n==d-2) || (n==d && k==d-2), -1, If[(k==n- 1 || k==n+1) && n<=d-1 && k<=d-1, -1, 0]]]; M[d_]:= Table[b[n, k, d], {n, d}, {k, d}]; p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]]; f = Table[p[x, n], {n, 0, 30}]; T[n_, k_]:= If[k==0, n!, Product[f[[j+1]], {j, n-1}]]/.x -> k+1; Table[T[k, n - k], {n,0,15}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 25 2021 *) (* Second program *) f[n_, x_]:= f[n, x]= If[n<2, (2-x)^n, (2-x)*LucasL[2*(n-1), Sqrt[-x]]]; t[n_, k_]:= t[n, k]= If[k==0, n!, Product[f[j, x], {j, n-1}]]/.x -> (k+1); Table[t[k, n-k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 25 2021 *)
-
Sage
@CachedFunction def f(n,x): return (2-x)^n if (n<2) else 2*(2-x)*sum( ((n-1)/(2*n-j-2))*binomial(2*n-j-2, j)*(-x)^(n-j-1) for j in (0..n-1) ) def T(n,k): return factorial(n) if (k==0) else product( f(j, k+1) for j in (1..n-1) ) flatten([[T(k,n-k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 25 2021
Formula
T(n, k) = Product_{j=1..n} A129862(k+1, j) with T(n, 0) = n!.
Extensions
Edited by G. C. Greubel, Jun 25 2021
Comments