cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A158054 a(1)=2, a(n+1) is the smallest prime > n*(sum of decimal digits of a(n)).

Original entry on oeis.org

2, 3, 7, 23, 23, 29, 67, 97, 131, 47, 113, 59, 173, 149, 197, 257, 227, 191, 199, 367, 331, 149, 311, 127, 241, 179, 443, 307, 281, 331, 211, 127, 331, 233, 277, 563, 509, 521, 307, 397, 761, 577, 809, 733, 577, 857, 929, 941, 673, 787, 1103, 257, 733, 691, 877
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 12 2009

Keywords

Examples

			a(1)=2;
a(2)=3 > 2 = 1*2;
a(3)=7 > 6 = 2*3;
a(4)=23 > 21 = 3*7;
a(5)=23 > 20 = 4*(2+3);
a(6)=29 > 25 = 5*(2+3);
a(7)=67 > 66 = 6*(2+9);
a(8)=97 > 91 = 7*(6+7);
a(9)=131 > 128 = 8*(9+7);
a(10)=47 > 45 = 9*(1+3+1).
		

Crossrefs

Programs

  • Maple
    A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: A158054 := proc() option remember; if n = 1 then 2; else (n-1)*A007953(procname(n-1)) ; nextprime(%) ; end if; end proc: seq(A158054(n),n=1..120) ; # R. J. Mathar, May 19 2010

Extensions

Corrected (193 replaced by 199, all terms from a(32) on replaced) by R. J. Mathar, May 19 2010
Edited by Jon E. Schoenfield, Feb 17 2019

A158055 a(1)=2, a(n+1) is the smallest prime > n*first digit of a(n).

Original entry on oeis.org

2, 3, 7, 23, 11, 7, 43, 29, 17, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 41, 89, 179, 29, 53, 127, 29, 59, 149, 31, 97, 281, 67, 199, 37, 107, 37, 113, 41, 157, 41, 167, 43, 173, 47, 181, 47, 191, 53, 251, 101, 53, 263, 107, 59
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 12 2009

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 2:
    for n from 1 to 99 do  A[n+1]:= nextprime(n*floor(A[n]/10^(ilog10(A[n])))) od:
    seq(A[i],i=1..100); # Robert Israel, Mar 23 2020

Extensions

Corrected by D. S. McNeil, Mar 21 2009

A158061 a(1)=2, a(n+1) is the smallest prime > n^smallest digit of a(n).

Original entry on oeis.org

2, 2, 5, 251, 5, 3137, 7, 823547, 67, 531457, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 401, 2, 487, 279847, 577, 9765629, 677, 387420499, 2, 853, 27011, 2, 1031, 2, 1163, 37, 46663, 50671, 2, 1523, 41, 43, 74093, 2, 1949, 47, 4477457, 4879687, 5308417, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 12 2009

Keywords

Examples

			2, 2(>1=1^2), 5(>4=2^2), 251(>241=3^5), 5(>4=4^1), 3137(>3125=5^5), 7(>6=6^1).
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,NextPrime[(n+1)^Min[IntegerDigits[a]]]}; Join[ {2},NestList[ nxt,{1,2},50][[All,2]]] (* Harvey P. Dale, Nov 18 2021 *)

Extensions

More terms from R. J. Mathar, Mar 17 2009
Edited by Charles R Greathouse IV, Mar 25 2010

A158059 a(1)=2, a(n+1) is the smallest prime >= n*sum of digits of a(n).

Original entry on oeis.org

2, 2, 5, 17, 37, 53, 53, 59, 113, 47, 113, 59, 173, 149, 197, 257, 227, 191, 199, 367, 331, 149, 311, 127, 241, 179, 443, 307, 281, 331, 211, 127, 331, 233, 277, 563, 509, 521, 307, 397, 761, 577, 809, 733, 577, 857, 929, 941, 673, 787, 1103, 257, 733, 691, 877
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 12 2009

Keywords

Examples

			2, 2(=2=1*2), 5(>4=2*2), 17(>15=3*5), 37(>32=4*1+4*7), 53(>50=5*3+5*7), 53(>48=6*5+6*3), 59(>56=7*5+7*3), 113(>112=8*5+8*9), 47(>45=9*1+9*1+9*3)
		

Crossrefs

Extensions

a(49) and terms from a(53) on corrected by R. J. Mathar, May 19 2010

A159063 a(1)=0, a(n+1) is the smallest nonprime >= n^smallest digit of a(n).

Original entry on oeis.org

0, 1, 4, 81, 4, 625, 36, 343, 512, 9, 1000000000, 1, 12, 14, 14, 15, 16, 18, 18, 20, 1, 21, 22, 529, 576, 9765625, 676, 387420489, 1, 30, 1, 32, 1024, 1, 34, 42875, 1296, 38, 54872, 1521, 40, 1, 42, 1849, 44, 4100625, 1, 48, 5308416, 1, 50, 1, 52, 2809, 1, 55
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 12 2009

Keywords

Examples

			0, 1(=1^0), 4(>2^1), 81(=3^4), 4(=4^1), 625(=5^4), 36(=6^2), 343(=7^3), 512(=8^3), 9(=9^1), 1000000000(=10^9), 1(=11^0), 12(=12^1), 14(>13=13^1), 14(=14^1), 15(=15^1)
		

Crossrefs

Extensions

a(21) inserted and terms from a(28) on corrected by R. J. Mathar, Mar 17 2009
Showing 1-5 of 5 results.