cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156639 a(n) = 169*n^2 - 140*n + 29.

Original entry on oeis.org

58, 425, 1130, 2173, 3554, 5273, 7330, 9725, 12458, 15529, 18938, 22685, 26770, 31193, 35954, 41053, 46490, 52265, 58378, 64829, 71618, 78745, 86210, 94013, 102154, 110633, 119450, 128605, 138098, 147929, 158098
Offset: 1

Views

Author

Vincenzo Librandi, Feb 15 2009

Keywords

Comments

The identity (57122*n^2 - 47320*n + 9801)^2 - (169*n^2 - 140*n + 29)*(4394*n - 1820)^2 = 1 can be written as A156721(n)^2 - a(n)*A156627(n)^2 = 1.
The continued fraction expansion of sqrt(a(n)) is [13n-6; {1, 1, 1, 1, 1, 1, 26n-12}]. - Magus K. Chu, Sep 06 2022

Crossrefs

Programs

  • Magma
    I:=[58, 425, 1130]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {58, 425, 1130}, 40]
    Table[169n^2-140n+29,{n,40}] (* Harvey P. Dale, Mar 24 2023 *)
  • PARI
    a(n)=169*n^2-140*n+29 \\ Charles R Greathouse IV, Dec 23 2011

Formula

G.f.: x*(58 + 251*x + 29*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

Extensions

Edited by Charles R Greathouse IV, Jul 25 2010