cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156640 a(n) = 169*n^2 + 140*n + 29.

Original entry on oeis.org

29, 338, 985, 1970, 3293, 4954, 6953, 9290, 11965, 14978, 18329, 22018, 26045, 30410, 35113, 40154, 45533, 51250, 57305, 63698, 70429, 77498, 84905, 92650, 100733, 109154, 117913, 127010, 136445, 146218, 156329, 166778
Offset: 0

Views

Author

Vincenzo Librandi, Feb 15 2009

Keywords

Comments

The identity (57122*n^2 +47320*n +9801)^2 - (169*n^2 +140*n +29)*(4394*n +1820)^2 = 1 can be written as A156735(n)^2 - a(n)*A156636(n)^2 = 1.
The continued fraction expansion of sqrt(a(n)) is [13n+5; {2, 1, 1, 2, 26n+10}]. - Magus K. Chu, Sep 15 2022
From Klaus Purath, Apr 06 2025: (Start)
a(n)*13^2-1 is a square, and a(n) is the sum of two squares (see FORMULA). There are no squares in this sequence. The odd prime factors of these terms are always of the form 4*k + 1.
All a(n) = D satisfy the Pell equation (k*x)^2 - D*(13*y)^2 = -1 for any integer n where a(1-n) = A156639(n). The values for k and the solutions x, y can be calculated using the following algorithm: k = sqrt(D*13^2 - 1), x(0) = 1, x(1) = 4*D*13^2 - 1, y(0) = 1, y(1) = 4*D*13^2 - 3. The two recurrences are of the form (4*D*13^2 - 2, -1).
It follows from the above that this sequence and A156639 belong to A031396. (End)

Crossrefs

Cf. A154609 (13n+5).
Subsequence of A031396.

Programs

  • Magma
    I:=[29, 338, 985]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
    
  • Maple
    A156640:= n-> 169*n^2 + 140*n + 29; seq(A156640(n), n=0..50); # G. C. Greubel, Feb 28 2021
  • Mathematica
    LinearRecurrence[{3,-3,1},{29,338,985},50]
    CoefficientList[Series[(29 +251x +58x^2)/(1-x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
  • PARI
    a(n)=169*n^2+140*n+29 \\ Charles R Greathouse IV, Dec 23 2011
    
  • Sage
    [169*n^2 + 140*n + 29 for n in (0..50)] # G. C. Greubel, Feb 28 2021

Formula

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) for n>2.
G.f.: (29 + 251*x + 58*x^2)/(1-x)^3. - Vincenzo Librandi, May 03 2014
E.g.f.: (29 +309*x +169*x^2)*exp(x). - G. C. Greubel, Feb 28 2021
From Klaus Purath, Apr 06 2025: (Start)
a(n) = (5*n + 2)^2 + (12*n + 5)^2 for any integer n.
169*a(n) - 1 = (169*n + 70)^2 for any integer n. (End)

Extensions

Edited by Charles R Greathouse IV, Jul 25 2010