A156640 a(n) = 169*n^2 + 140*n + 29.
29, 338, 985, 1970, 3293, 4954, 6953, 9290, 11965, 14978, 18329, 22018, 26045, 30410, 35113, 40154, 45533, 51250, 57305, 63698, 70429, 77498, 84905, 92650, 100733, 109154, 117913, 127010, 136445, 146218, 156329, 166778
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[29, 338, 985]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
-
Maple
A156640:= n-> 169*n^2 + 140*n + 29; seq(A156640(n), n=0..50); # G. C. Greubel, Feb 28 2021
-
Mathematica
LinearRecurrence[{3,-3,1},{29,338,985},50] CoefficientList[Series[(29 +251x +58x^2)/(1-x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
-
PARI
a(n)=169*n^2+140*n+29 \\ Charles R Greathouse IV, Dec 23 2011
-
Sage
[169*n^2 + 140*n + 29 for n in (0..50)] # G. C. Greubel, Feb 28 2021
Formula
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) for n>2.
G.f.: (29 + 251*x + 58*x^2)/(1-x)^3. - Vincenzo Librandi, May 03 2014
E.g.f.: (29 +309*x +169*x^2)*exp(x). - G. C. Greubel, Feb 28 2021
From Klaus Purath, Apr 06 2025: (Start)
a(n) = (5*n + 2)^2 + (12*n + 5)^2 for any integer n.
169*a(n) - 1 = (169*n + 70)^2 for any integer n. (End)
Extensions
Edited by Charles R Greathouse IV, Jul 25 2010
Comments